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TABLE III
COMPARISON EXPERIMENT RESULTS ON THE EVALUATION DATASETS.

Data

Weiszteld
[8]

¢1-IRLS
[10]

OMSTs
[17]

£1-IRLS(£ 1 )
2
[11]

Proposed
method

ELS
PDP
NYC
MDR
YKM
MND
TOL
ALM
GDM
VNC
UsQ
ROF
PIC
TFG

1.66
3.35
2.43
4.37
2.73
0.92
2.73
3.57
5.14
13.54
2.11
7.65
13.20

1.02
2.19
1.43
2.75
1.71
0.77
2.55
2.12
39.15
4.47
4.34

2.38

1.15
2.62
1.40
3.08
1.62
0.71
2.45
2.14
28.20
4.64
4.97
1.70
3.12
2.03

0.75
1.73
1.30

SNF

15.85 3.05

3.56

on the evaluation datasets.}}

{

wnultll,w{Z}*{Data1

{color_3rd}{$1
llcolor{color_3rd}

ellcolor{color_4th}{$1

ellcolor{color_3rd}{$2
llcolor{color_4th}
llcolor{color_4th}
ellcolor{color_4th}

il(()lor‘-{(:olur_3rd
llcolor{color_3rd}
X \(EllLOlOI{COlUI‘ 3rd}{$:

\Lellrolor color 2nd‘{

\cellcolor{color_1st}{$1.
\cellcolor{color_2nd}{$3.

{C
ell(olar‘{(olor'_llth}{$l.
ellcolor{color_4th}{
ellcolor{color_3rd}{$1.
ellcolor{color_4th}{$3
ellcolor{color 3rd}{$1.
ellcolor{color_3rd}{
ellcolor{color_3rd}{$2
\cellcolor{color 4th}{

(ell olor{color_2nd}{$

or{color_4th}{$4.
\cellcolor{color_ath}{
{color_1st}{$1 4} &
ellcolor{color_ 3rd}{$
\cellcolor{color_2nd}{
t \cellcolor{color_4th}{$3

or{color_2nd}{
olor{color_2nd}{$1
\r511Cn10ILC010P 2nd}{$1‘3

olor Lcnlor‘ 2nd}{
\cellcolor{color_2nd}{
\cellcolor{color 2nd}{$1.
lcolor{color_4ath}{$
Jr‘color an}{

I“I
llroloblcolorflst
\cellcolor{color_3rd}{$
\cellcolor{color_3rd}{$3

& method
1

\Xhline{@.5pt}
\cellcolor{color_1st}{$
t \cellcolor{color_1st}{$
¢ \cellcolor{color_1st}{$1
ellcolor{color_2nd}{$2
ellcolor{color 2nd}{$1
x \cellcolor{color_1st}{$
 \cellcolor{color_1st}{$2.0
\cellcolor{color 1st}{$1.
\cellcolor{color_1st}{$
ellcolor{color 1st}{$1
\cellcolor {(Dlur‘ lst"{f-’

llcolorlcolor 4th {$4
3 11color{color_4ath}{
} & \(Elllﬁlﬂllcﬂlﬂl - 1st}H$

59$ 3\

¥ \
\\Xhline{@.5pt}]
\\Xhline{1pt}

By X. Gao



LaTeXT&E 1

 Hello World

1 \documentclass{article}

2 \usepackage[utf8]{inputenc} %

3

4 \title{test}

5 \author{xgao.nlpr } N
6 \date{OCEwc:B”évr‘WZ’wagl} tebt
7

8

-\begin{document} | xgao.nlpr
9

10 \maketitle October 2021
11

12-\section{Introduction}
13

14 Hello world! 1 Introduction
15

16 \end{document} | Hello World!
17

« HOverleaffiE— NI, #HALREF@ETHRFECUI+Enter#tfTHIE
- #F1f7\documentclass{article} XZ (article) T
 \titile{}, \author{}, \date{}ar < ATRAEETHGS, ATRAEXER
* \maketitile AFIEIRRA IS, AT ETIREEXESR

9 of 133 | Nov 2021 By X. Gao




LaTeX &9

 Hello World

1 \documentclass{article}

2 \usepackage[utf8]{inputenc}

3

4 \title{test}

5 \author{xgao.nlpr } .
6 \date{october 2021} tebt
7

2-\beg‘in{document} Xgao.nlpr

10 \maketitle October 2021
11

12-\section{Introduction}
13

14 Hello world! 1 Introduction
15

16 \end{document} | Hello World!
17

* \usepackage[l[{ARBMNEH TS, HHTFCHAI#Include <>t<

o IFXHiF\begin{documentt5\end{document}z jg], #BHFChHIMain()FEX

«  Fil\command[[{ AHERR S, BE VAL, HIEFCHRORE, HuEms
SRPHET N5 ¢ ZE

10 of 133 | Nov 2021 By X. Gao

A




TRAE (B 91

« RIEHR
 FRLTOHREAS I AEH T
+ & FlaTeXTE2h EAEMR £ #1710 SCHERR

11 of 133 | Nov 2021 By X. Gao
R



RIEEEAN

- Z%HH
- FEESMlaTeX, RERE, ARBBBEUEARYE, 20205E7H%1kR, GitHub
* The Not So Short Introduction To LaTeX (Chinese Edition), v6.02, GitHub

12 of 133 | Nov 2021 By X. Gao
————


https://github.com/wklchris/Note-by-LaTeX
https://github.com/CTeX-org/lshort-zh-cn

AR AR 715

* |EEE Template Selector
Select Select Select Article Select Download
> Publication Type > Publication > Type > Format > Template >

Find the right IEEE article template for your target publication.

Please select your publication type below.

Transactions, Journals and Letters Magazines Conferences

* Springer International Journal of Computer Vision (I1JCV)
MSWord: The journal does not provide MSWord templates for your manuscript. Please consult each
section of the Instructions for Authors to ensure all components of your article have been properly

included (references, table, figures, etc). If accepted, your article will be formatted by our production
team.

13 of 133 | Nov 2021 By X. Gao


https://template-selector.ieee.org/secure/templateSelector/publicationType

AR AR 715

* |EEE Conference on Computer Vision and Pattern Recognition (CVPR)

Papers are limited to eight pages, including figures and tables, in the CVPR style.
detailed formatting instructions:

e Example submission paper with detailed instructions
e |LaTeX/Word Templates (tar)

* |LaTexX/Word Templates (zip)
* ACM SIGGRAPH

Templates and Instructions

Authors who submit material to SIGGRAPH-sponsored events must use ACM’s article template. The "acmsiggraph”
template has been deprecated - please do not use it.

LaleX and Microsoft Word templates for Windows and Macintosh (Office 2011, Office 2016) are available. The use of
LaleX is strongly recommended over Microsoft Word. The LaleX template is distributed to major TeX repositories - you

may find that it is already installed, or available via a package update on your computer (TeX Live 2016, MacTeX, MikTeX,
etc.).

14 of 133 | Nov 2021 By X. Gao



AR

IEEE Signal Processing Letters (SPL) Manuscript

IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, MONTH YEAR

Hierarchical RANSAC-Based Rotation Averaging

Xiang Gao, Jiazheng Luo, Kungian Li, and Zexiao Xie

Abstraci—In this letter, we present a novel rotation averaging
pipeline, which is perﬁnmled in a hierarchical manner. Unlike tlle
traditional rotation averaging methods which focus on desiy

whose edges are served as the minimal set for model estima-
tion and outlier detection. As we know, the result of RANSAC-

robust loss function to get rid of the impacts of the relative
rotation outliers, here the outliers are detected and ﬁllzred by
leveraging the well-known robust model

based estimation is to the size and inlier ratio of the
minimal set. To make our method more effective and robust,
two pies. including graph clustering and edge weighting,

RANdom SAmple Consensus (RANSAC) During Ille RANSAC
process, the minimal set is randomly sampled by random tree
spanning on the Epipolar-geometry Graph (EG). As the RANSAC
estimation result is sensitive to the size of minimal set, the EG is
clustered into several sub-graphs, and the inner- and inter-cluster
RANSAC-hased rotation averaging are performed hierarchically.
In addition, both random generation and optimal selection of the
minimal set are performed in a weighted manner to make the
rotation averaging pipeline more robust. Ablation studies and
comparison experiments on the 1D8MM and San Francisco (SNF)
datasets demonstrate the effectiveness of our proposed method

Index Terms—Rotation averaging, random tree spanning.
graph clustering, weighted selection and optimization.

L INTRODUCTION

OTATION ping [1] the absolute camera
orientations given the mlative rotation measurements,
which is a critical step in global Structure-from-Motion (SfM)
methods [2], [3], [4]. [5]. [6]. Though has been widely inves-
tigaed [7], [B]. [91. [10]. [11]. the rotation averaging problem
is far from being solved as the relative rotations in Epipolar-
geometry Graph (EG) contain inevitable outliers, which ame
resulted from feature mis-matches, especially for the image
collections downloaded from the Internet [12]. To deal with
this issue. existing methods usually seek to design complicated
loss functions to make the optimization process mome robust
to the relative rotation outliers [8], [9], [10]. [11]. Though
proven to be effective and integrated into several global SfM
pipelines [2]. [3]. [4]. [6]. these methods heavily depend the
initialization and sometimes even fall into local minima which

would lead to poor rotation averaging results [13].
In contrast to the above methods, this letter presems a

are adopied. For graph clustering, the EG is firstly clustered
into several sub-graphs, and then the inner- and inter-cluster
RANSAC-based rotation averaging are performed. For edge
weighting, both random generation and optimal selection of
the minimal set in our pipeline are performed in a weighted
manner to increase the reliability of each RANSAC iteration
and the whole RANSAC process.

The main contributions of this letter are three folds: 1) A
novel RANSAC-like rotation averaging pipeline is presented.
which is realized by random wee spanning: 2} Two key
strategies, including graph clustering and edge weighting, are
introduced to make our method more effective and robust:
3) Comparison experiments with several state of the arts on the
well-known 1DSM [2] and San Francisco (SNF) [9] datasets
are performed to demonstrate the effectiveness and advantage
of our proposed method.

II. RELATED WORKS
In this section, two main types of existing rotation averaging
methods, including robust loss-based and outlier fillering-
based ones, are briefly reviewed.

A. Robust loss-based rotation averaging
The robust loss-based rotation averaging methods [10], [11]
seek to design loss functions to achieve robust estimations of
the absolute rotations in the presence of the rlative rotation
outliers. Chatterjee et al. [10] developed a two-siep rotation
averaging method. They firstly used the £; solution as an ini-
tialization to make their method robust to the relative rotation
outliers. Then, an leratively Reweighted Least Squares (IRLS)
pproach was followed to achieve an efficient and accurate

novel rofation averaging pipeline. which is
detecting and filtering the relative rotation outliers. [nsl.ead
of introducing the commonly-used loop constraints [5], [14].
[15]. here the outliers are detected by the well-known robust
model estimation procedure, RANdom SAmple Consensus
(RANSAC) [16]. In order to perform a RANSAC-based ro-
tation averaging. random spanning tree on the EG is involved,

Manuscript received September 3, 2020; revised October 6, 2020; accepted
October 10, 2020. Date of publication Month Day, Year: daie of cument
version Month Day, Year This work is supporied by the National Science
Foundation of China (62003319, 62076026, and 61906177}, the Open Projects
Program of National Laboratory of Pattern Recognition (202000010), and the
Post-Dactoral Applied Research Projects of Qingdao. {Comresponding author:
Kingian Li )

X. Gao, I Luo, K. Li, and 7. Xie are with Coliege of Engineering, Ocean
Umver\lry of China, Qingdao 76611]} China Ge-mail: xgao@oucedocn;

@stwoucedwon; 1 edu cn; xiezexizo@ouc edwcnl.

absolule rotation estimation. Chatterjee &t al extended their
previous work in [11]. For the initialization step, £;-based
optimization was still used. As for the IRLS step. they
provided a fairly exhaustive evaluation of the performances of
a variety of robust loss functions, and their evaluation led to
a recommendation of the tl loss function. Though the above
methods are Tobust to the Telative rotation outliers to some
extent, the optimization in these methods heavily depends
on the initialization and sometimes it would fall into local
minimum unexpectedly [13].

B Outlier filtering-based rotation averaging

Compared with the robust loss-based rotation averaging
methods, the outlier filtering-based ones [7]. [17] are more
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Fig. 1. Pipeline of our proposed hierarchical RANSAC-based rotstion averaging. The input of our method & the mlative rotations and the featue match
number, { Rij, nijles; € £]. between matched image pairs, and the catput of cur method is the optimized absoute rtation, { R | & V}, of each camera

straightforward in principle. This type of methods follows
the clean-then-optimize strategy. ie first clean the EG by
detecting and filtering the relative rotation outliers and then
optimize the cleaned EG using existing rotation averaging
methods, e.g [11]. Govindu [7] presented a primary research
on the RANSAC-based rotation averaging method. It gener-
aked random spanning trees on the EG with random depth
first search, which were used to initialize the absolute rotation
estimations and detect the melative rotation outliers. Then the
absolute rotations are optimized in an iterative manner. Cui et
al [17] proposed a multiple Orthogonal Maximum Spanning
Trees (OMSTs)-based rotation averaging method. Based on
the observation from statistical view that the relative rotation
accuracy was positively comelated with the feature match
number. they selected multiple OMSTs from the original EG
to obtain a set of densely connected and more accuraie relative
rotations to upgrade the input of rotation averaging.

Though similar in principle, there are several differences
between [7] and ours: 1) We present a novel random spanning
tree approach in a weighted manner based on random breadth
first search; 2) We perform graph clustering on the EG to
downsize the minimal set and improve the method robustness;
3) We utilize the simple £5-based loss function for optimization
as the ahsolute rotations are accurately and robustly initialized.

III. PRELIMINARIES

In this section, several preliminaries of our work. including
the definition of rotation averaging problem and the choices
of loss function and distance measure, are briefly introduced.

Considering an EG, denoted as G = (V. £), is formed by
V| cameras and |£| relative rotation measurements. A vertex
vy £ V corresponds to a camera with absolute rotation R, and
an edge e,y £ links an image pair with relative rotation Ry,
Then, the rotation averaging problem is defined as:

{R}} = argmin Z pld(Ry, RyRT)) (1
ey EE

where {R;} is the estimated absolue rotations. p.) is the
loss function for robust optimization, and &(...) is the distance
measure between the measured and re-computed relative rota-
tions. For loss function o). thanks to our effective outlier
filtering straiegy. the simple £ loss is used in this letter.
For distance measure (., .). we choose the angular distance
dg(.,.), which is used in most of the related works [10],
[11], [17], [18]. Based on the chosen distance measure, the
inlier'outlier criterion is defined as follows: A relative rotation
R,y is an inlier if dg(Ryy, R}(RI)7) < A, where G is the
angular distance threshold and is set to 3° in this letter.

IV. PROPOSED METHOD

In this section, our proposed hierarchical RANSAC-based
rotation averaging method is described. The input of our
method includes the relative rotations and feature match
number between matched image pairs, which are denoted as
{Ryy, myglegy € £} The feature match number Tiyy is used to
weight the edges of EG as the accuracy of R, is positively
correlaed with ny; statistically [17]. The output of our method
is the optimized absolute rotation of each camera. which is
denoted as {Rj|v, £ V. Fig. | shows the pipeline of our
method: 1) A constrained community detection algorithm [19]
is employed on the original EG to cluster it into several sub-
graphs; 2} Inner- and inter-clusier RANSAC-based rotation
averaging is performed successively for relative rotation outlier
detection and absolute Totation estimation initialization; 3) £5-
based global optimization is conducted on the basis of outlier
detection and estimation initialization to obtain the final rota-
tion averaging results. In the following, several key techniques
of our proposed method are detailed.

A. Random Tree Spanning

RANSAC is known as a bottom-up methodology which
performs several times of model estimation with randomly
sampled minimal set, and the estimation result is set to the
model with largest size of supporting set. For the rotation
averaging problem, the minimal set consists of the edges of a
spanning tree on the EG. As a msult, random spanning tree is
involved in our method for minimal set generation.

In this letter. the random tree is spanned based on the
idea of breadth first search. Specifically, the tree spanning
process starts from anyone of the EG vertices. Without loss
of generality, the first veriex is used as the spanning origin.
Suppose the current vertex set has (has not) been spanned
denoted as Vi(Va), and the edge set between Vy and Vo is
denoted as £y0. An edge is randomly selecied from £y5 and
the unspanned veriex connected by the selected edge is moved
from V; to Vy. The above random selection process is iterated
until Va becomes an empty set

In addition, as the minimal set with all inliers is preferred for
RANSAC procedure, the random tree is spanned in a weighted
manner here. Specifically, suppose the number of feature
matches of an edge e,; € £14 is denoted as n;, the probability
of ey being selected from £12 is Pley) = 52—

Faygeers

B RANSAC-based rotation averaging
After minimal set generation by random tree spanning, it
is involved in the RANSAC process for absoluke rotation

pao
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estimation. The initial estimation of each absolute rotation
is obtained by firstly finding the paths between the fiducial
and the other vertices, and then chaining the relative rotations
along the paths. Based on the initial estimation, the supporting
set of the random spanning tree could be obtained by:

= {do(Byy. RYB)T) < busley £}, @

where {Rf} is the initial estimation of each absolule rota-
tion obtained from the random spanning tree and S denotes
supporting. Generally, during the RANSAC process, several
minimal sets, 100 in this letter, are randomly generated and
the optimal one is the one with largest size of the supporting
set |£%. Here, we consider the feature match number once
again and the optimal minimal set is the one with largest sum
of feature match number of its supporting set 37, ex s

Then, the absolute rotations are optimized by the following
weighted fo-based optimization:

[Ry) = srgmin 3 "n.,dg[R._,,R}{Rf]T}”h. 3)

ey £E*

C. Hierarchical rotation averaging

Theoretically, absolule rotations could be estimated by the
above RANSAC-like rotation averaging pipeline based on
weighed random tree spanning and f-based optimization.
However, it is almost impossible (o generaie a spanning tree
on the entire EG with all inlier edges, especially for the large-
scale image set. In order to improve the effectiveness and
robustness of our rotation averaging method, a hierarchical
rotation averaging pipeline is proposed. The original EG is
firstly clusiered into several sub-graphs. Then. rotation aver-
aging is performed in a hierarchical manner, including inner-
and iner-cluster RANSAC-based rotation averaging, and fa-
based absolute rotation global optimization.

C v detection for ¢ d EG clustering: Graph
clustering has been widely investigated in recent years [20].
[21]. [22]. Here we choose the Louvain's algorithm-based
community detection methods [23], [24] for EG clustering.
which are also used in [18], [19], [25], [26]. In addition, as
the RANSAC-based rotation averaging is sensitive to the size
of the minimal set, here the EG is clustered in a constrained
way [19], i.e constraining the max size of each cluster to a
pre-set upper limit, 100 in this letter. The influence of the max
cluster size is discussed in the supplemental text material.
Inner-cluster RANSAC-based rotation averaging: After
graph clustering, each clusier is with less vertices and edges.
Then, the RANSAC-based rotation averaging is performed on
each cluster individually. This is the low-level step in our
hierarchical pipeline. Note that the rotation averaging results
are in their local coordinate systems for all clusters.
Inter-cluster RANSAC-based rotation averaging: By con-
sidering each cluster (including the vertices and edges in the
cluster) as a vertex and the edges between two clusters as an
edge. the cluster-based structure could be regarded as a high-
level graph, and the absolute rotations of all the cluster local
coordinae systems could also be estimated by the RANSAC-
based rotation averaging method. This is the high-level step

in our hierarchical pipeline. After the above low- and high-
level sieps, all the clusters, including the vertices in them, are
aligned into a uniform global coordinate system.

However, for the inter-cluster RANSAC-based rotation av-
eraging, ther ar usually many edges between two clusters
connecting different vertices. In order to perform the high-
level rotation averaging, we need to obtain the relative ro-
tation between the local coordinale sysems of the cluster
pair from these inter-cluster edges. Suppose after inner-cluster
RANSAC-based rotation ging, the ahsol ions of
the m-th cluster are denoted as {RY |vf, € Vm} and the
relative rotations of the edges between the m-th and the n-th
clusters are denoted as {RY, e & £ny ). For each relative
rotation in {RY_}. an estimation of the relative rotation
between the m-th and the n-th clusiers could be obtained by:

R, = (R R, @
Note that the local coordinale system of each cluster is
construcied on the first veriex of the clusier in this letter.

Theoretically, all the rotations in { Y } should be identical
as all of them represent the relative rotation between the
cluster pair. However, that is impossible due to the inevitable
estimation ermors in { Ry, }. {R% ). and { R, }. As amesult, the
problem of iner-cluster mrelative rotation estimation problem
is boiled down to a single rotation averaging problem [1], ie
averaging to give the best rotation from several estimations of
a single rotation. This problem is solved by a RANSAC-like
approach again in this letter, which is detailed in the following.

For each RANSAC iteration. a rotation R] is randomly
sampled from the inter-cluster relative rotation set { R4} in
a weighted manner and its supporting set is obtained by:

£ = { Aol R REya) < Outlethn € En} - ()
Similar to our RANSAC-based multiple rotation averaging
method, the optimal minimal set, here a single rotation, is
the one with largest sum of feature match number of its
supporting set Zun:p n¥,, among all the 100 randomly
selecied single rotations in {his letter.

Then, the inter-cluster relative rotation is also optimized by
a weighted f-based optimization:

R —srgmin 3" |nidudo(BL REL|, . ®
SHn € :

fy-based absolule rotation global optimization: On the
basis of the inner- and inter-cluster RANSAC-based rotation
averaging, the absolute rotations of the vertices have been
initialized and the relative rotation outliers of the edges have
been detected. Then, a weighted £5-based global optimization,
which is similar to that of Eq. 3, is performed on the cleaned
EG to optimize all the absoluie rotations, by which the final
rotation averaging result is achieved.

V. EVALUATION
In this section, our proposed hierarchical RANSAC-based
rotation averaging method is comprehensively evaluaied. We
first introduce the data and measure for method evaluation. On
this basis, ablation studies and comparison experiments with
several stale of the arts are performed.
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TABLE I TABLE 11T
META-DATA OF THE EVALUATION DATASETS. COMPARISON EXPERIMENT RESULTS ON THE EVA LUATION DATASETS.
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TABLE IT
ABLATION STUDY RESULTS 0N THE EVALUATION DATA SETS.

Without ‘Without
chwsiering  constraint

A Data and Measure

The evaluation is performed on the 1DSMM [2] and SNF
[9] datasets. The 1DSM dataset contains images of 14 scenes
downloaded from the Internet while the SNF dataset contains
TEGE Google Street View images. The relative rotations and
feature match number between image pairs of each test data
are also provided. The meta-data of the evaluation datasets is
listed in Table 1. The number in the round bracket indicates
the number of vertices with ground truths Vy,. |C| denotes the
number of clusters obtained by the constrained EG clustering.
7y and 7y are the median and mean errors of relative rotations,
and 7i;; and 7,y are the median and mean values of feature
match number. To evaluate the rotation ping . the
estimated absolute rotations are aligned to the ground truths
with a best relative rotation between the two rotation sets [10],
[11]. Then, the median value of the alignment errors is used
as the accuracy evaluation measure [8], [10], [11].

B. Ablation studies
Ablation studies are conducted to o the

Without constraint: In this situation. the EG is clustered
using the unconstrained Louvain's algorithm, ie the EG is
clustered without setting the max size of each cluster.
Without optimizing: In this situation, neither the final global

ization nor the optimization in inner- or inter-cluster
RANSAC based rotation averaging is performed.

The ablation study results are shown in Table II. We can see
that the rotation averaging accuracies have obvious decreases
in most ablation study situations compared with our proposed
method. As a result, all the strategies of edge weighting, (con-
strained) graph clustering, and f-based optimization could
increase the accuracy and robusiness of our method. Note that
the method of [7] could be approximately considered as our
proposed method with neither weighting nor clustering.

C. Comparison experiments

Comparison experiments are performed between our pro-
posed method and several state-of-the-art rotation averaging
methods, including Weiszfeld [8], £,-IRLS [10]. £;-IRLS(£,)
[11]. and OMSTs [17]. The comparison experiment results
are shown in Table I We can see that our proposed method
achieves the overall best performance among all the compar-
ative methods: It achieves best results on 10 test data and
second-best mesults on 2 fest data among all 15 test data.
Though our proposed method does not perform very well on
three relatively larger-scale test data, ROF, PIC, and TFG, we
believe that not only the data size. but also some other data
characieristics, e.g noise level and connectivity tightness of
the EG, would influence its result [27], as the best result is
also achieved by our proposed method on the largest test data,
SNE

VI CONCLUSION
This letter presents a hierarchical RANSAC-based rotation

ness of our proposed method, which are briefly introduced.
Without welghting: In this situation, all edges ar identically
treated during the rotation averaging process, ie may is not
involved in minimal set selection or £5-based optimization.
Without clustering: In this situation, community dekection
for EG clusiering is not performed. and the RANSAC-based
rotation averaging method is conducted on the entire EG.

¢ pipeline to deal with the relative rotation outliers.
The absolute rotations are initialized by random tree spanning
on the EG and are optimized with the supporting set of the
optimal random spanning tree. Besides, two key siraiegies,
including graph clustering and edge weighting, are involved to
make our method more effective and robust. Ablation studies
and comparison experiments on the 1DSM and SNF datasets
demonstrate the effectiveness of our proposed method.
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This supplemental text material mainly discusses the influence of the max cluster size in the constrained EG clustering to

the final rotation averaging results of our proposed method.

‘We perform our proposed roation averaging method with 5 different max cluster sizes, which are I = 1,50, 100, 200, oo
Here, I” = 1 means that each camera forms a cluster, ie. the situation of without clustering in the ablation studies of the
main text: And. [” = oo means the EG clustering is not constrained, ie the situation of without constraint in the ablation
studies of the main text. Similar to the main text, the experiments are also performed on the 1DSfM and SNF datasets, and
the results are shown in Table V.

From the Table we can see that: 1) The number of clusters |C| is positively correlated to the vertex number |V). and negatively
comelated to the max cluster size I: 2) Our proposed method overall achieves betier performance when I” is set to moderate
valugs, Le. I” = 50,100,200, than the extreme situations, ie I” = 1,00, and the variation of I” in a proper range would
not much influence the final accuracy. The above observation comes to a conclusion that the specific value of I” is not very
important when it is in a proper range. but the involvement of {constrained) EG clustering or not is of much significance,
which leads to the parameter setting of I to 100 in this letter

In addition. the situation of I” = oo achieves best performance on 4 text data, MDR. MND, GDM. and ROE As the graph
clustering result heavily depends on the graph structure, compared with the unconstrained one. the constrained EG clustering
is likely to weaken the inner- or inter-connectivity of the clusters and worsen the rotation averaging results on MDR, MND.
GDM. and ROE

and Pasiern Recognision (CVPR), 2020, pp. 60306038, I
[12] C. Zach. M. Klopschitz, and M. Pollefeys, “Disambiguating visual hard?” in European Conference on Computer Vision (ECCV), 2016, pp.
relalions using loop constraints,” in JEEE Conference on Computer 255-770.
Vision and Pattern Recopmition (CVPR), 2010, pp. 1426-1433,

K. Wilson, D). Bindel, and N. Snavely, “When is rotations averaging




AR

4»

IEEE Signal Processing Letters (SPL) Manuscript

Mamuscript.tex X

[Lletterpaper]{IEcEtran}
\ifCLASSINFOpdf

{times}
{eod g}
ok

{gensymb}
{verbatim}
{balance
{colorthl}
{makecel i
“hyphenation{op-tical net-works semi-conduc-tor}

\definecolor{color_1st}{rgb}{1.8, 8.8, 1.8
“definecolor{color_2znd}{rgb}{1.e, 8.4, 1.8}
‘\definecolor{color_3rd}{rgb}{1.0, 8.7, 1.6}
\definecolor{color 4th}{rgb}{1.8, 8.9, 1.8}

1
\t]t]E(HlErar(hl(al RANSAC-Based Rotation Averaging}
“author{xiang-Gao, Jiazheng-Luo, Kungian-Li, and Zexiao xie
‘thanks{Manuscript received September 2, 2e2e; revised october &, 2020; accepted october 1e, 2e28. Date of publication Month pay, vear; date of curr'ent version Month Day, Year. This work is supported by the mational science roundation of China (62083319, 62076826, and 61906177),
the Open Projects Program of National Laboratory of Pattern Recognition (282806@18), and the Post-Doctoral Applied Research Projects of Qingdao. \emph{(Corresponding guthor: Kungian Li.}}}
‘thanks{X. Gao, 3. Luo, K. Li, and Z. Xie are with college of Engineering, Ocean University of china, Qingdac 266188, china (e-mail: xgaofouc.edu.cn; luojiazheng@stu.ouc.edu.cn; likungian@ouc.edu.cn; xiezexiao@ouc.edu.cn).}}

\markboth{IEEE Signal Processing Letters,-Vol.~XX, No.~XX, Month-vear}
{IEEE Signal Processing Letters,-Vol.-XX, No.-XX, Month-Yearg}
‘\maketitle

{abstract}
In this letter, we present a novel rotation averaging pipeline, which is performed in a hierarchical manner. unlike the traditional rotation averaging methods which focus on designing robust loss function to get rid of the impacts of the relative rotation outliers, here the
outliers are detected and filtered by leveraging the well-known robust model estimation procedure, RANdom SAmple Consensus (RANSAC). During the RANSAC process, the minimal set is randomly sampled by random tree spanning on the Epipolar-geometry Graph (EG). As the RANSAC
estimation result is sensitive to the size of minimal set, the EG is clustered into several sub-graphs, and the inner- and inter-cluster RANSAC-based rotation averaging are performed hierarchically. In addition, both random generation and optimal selection of the minimal set are
performed in a weighted manner to make the rotation averaging pipeline more robust. Ablation studies and comparison experiments on the 1DSfM and {San Francisco (SNF) datasets} demonstrate the effectiveness of our proposed method.

EREyWOrds
Rotation averaging, random tree spanning, graph clustering, weighted selection and optimization.
eywords}

\LEEEpeerreviewmaketitle

\section{Tntroduction}
A ﬁ}{atation} averaging {Ha
. Though has been widely mvestlgated

13} estimates the absnlute camera orientations gwen the relative rotatmn maasurements, wnlch is a critical step in global Structure-from-motion (SfM) methods {l
c the rotation averaging problem is far from being solved as the relative rotations in ErETH T e ()
. To deal with this issue, existing methods usually seek to design complicated loss functions to make the
3 AMI-12}. Though proven to be effectwe and integrated into several global sfM pipelines
A CirfE ) ] T D Cra EEiee FrEe iy S o .

, these methods heavily depend the initialization and sometimes even 'Fall into local min

In contrast to the above methods, this letter presents a novel rotation averaging pipeline, which is concentrated on detecting and filtering the relative rotauon outliers. Instead of introducing the commonly-used loop constraints
2}, here the outliers are detected by the well-known robust model estimation procedure, RANdom Sample Consensus (RANSAC _ In order to perform a RANSAC-based rotation averaging, random spanning tree on the EG is 1nv01ved whose Edges are served
as thE minimal set for model estimation and outlier detection. As we know, the result of RANSAC-based estimation is semsitive to the size and inlier ra’tlu of the minimal set. To make our method more effective and robust, two strategies, including graph clustering and edge
weighting, are adopted. For graph clustering, the ec is firstly clustered into several sub-graphs, and then the inner- and inter-cluster RAMSAC-based rotation averaging are performed. For edge weighting, both random gemeration and optimal selection of the minimal set in our
pipeline are performed in a weighted manner te increase the reliability of each RANSAC iteration and the whole RANSAC process.

3§ B 3 i Gl o sy o COg el S Sl i o

The main contributions of this letter are three folds: 1)-A novel RANsAC-like rotation averaging pipeline is prassnted which is realized by random tree spanning
1} datasets} are performed to demonstrate the effectiveness and advantage of our proposed method.

effective and robust; 3)-Comparison experiments with several state of the arts on the well-known 1DSfM -14} and {San Francisco (SNF) {C

\section{Related works}
In this section, two main types of existing rotation averaging methods, including robust loss-based and outlier filtering-based cnes, are briefly reviewed.
“subsection{robust loss-based rotation averaging}

The robust loss-based rotation averaging methods MI 18} seek to design loss functions to achieve robust estimations of the absolute rotations in the presence of the relative rotation outliers. Chatterjee \emph{et al.} {
} developed a two-: step r*utatlon averagmg Ietmd. They f1rstlyI used the s‘.ell 13 solutmn as an initialization to make thelr lethDd robust to the r*elat1ve r'otatlon outliers. ‘men, an Iteratlvely Reweighted Least Squares (IRLS) appmacn was followed tu achieve
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This supplemental text material mainly discusses the influence of the max cluster size in the constrained 6 clustering to the final rotation averaging results of our proposed method.

We perform our proposed rotation averaging method with $53 different max cluster sizes, which are $\varGamsa-1, \infty$. Here, $\varGamma-1% means that each camera forms a cluster, \emph{i.e.} the situation of \textbf{without clustering} in the ablation studies of the
main text; And, $\varGamma-\infty$ means the EG clustering is not constrained, ‘emph{i.e.} the situation of \textbf{without constraint} in the ablation studies of the main text. similar to the main text, the experiments are also performed on the 1DSfM and SNF datasets, and the
results are shown in Table {t 1.

From the Table we can see that: 1)-The number of clusters §|\mathcal{C}|§ is positively correlated to the vertex number §|\mathcal{V}|$, and negatively correlated to the max cluster size $\varGamma$; 2)-Our proposed method overall achieves better performance when $\varGamma$ is

set to moderate values, ‘emph{i.e.} $\varcamma 2003, than the extreme situations, ‘emph{i.e.} $\varGammaz-1,\inftys, and the variation of $\varcammas in a proper range would not much influence the final accuracy. The above observation comes to a conclusion that the specific
value of $\varGamma$ is not very important when it is in a proper range, but the invelvement of (constrained) EG clustering or net is of much significance, which leads to the parameter setting of §\varGamma$ to $10e§ in this letter.

In addition, the situation of $\varGamma-\infty$ achieves best performance on $4% text data, MDR, MND, GDM, and ROF. As the graph clustering result heavily depends on the graph structure, compared with the unconstrained one, the constrained eG clustering is likely to weaken the
inner- or inter-comnectivity of the clusters and worsen the rotation averaging results on MDR, MND, GDM, and ROF.
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blg: BIBTEXHE
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What are .cls and .sty files; How are they different?
Will Robertson  July 15, 2005

In general, . cls and .sty files are supplementary files that increase the func-
tionality of WIEX. They are the files loaded with the \documentclass{...}
and \usepackage{. . .} commands, respectively. We generally call . c1s files
‘classes’, and . sty files ‘style files’, or often just ‘packages’.

They both may contain arbitrary TpX and HTEX code, but they are
used in separate ways. Loading a class via \documentclass is mandatory,
and may only appear once in a BTEX document; usually, it is the very first
command. On the other hand, packages are optional and as many of them
may be loaded as one could wish (prior to the beginning of the document
itself).

In the ideal case, a class file will completely define the structure of the doc-
ument. The familiar article class is a good example: it provides commands
for typesetting articles, such as \section, \tableofcontents, \author and
S0 on.

Packages, or style files, are then used to provide anything else that the
class doesn’t accommodate. These fall into two broad categories: amend-
ments to the class file, or additional functionality. For example, the graphicx
package provides methods to include images and apply all manner of graphi-
cal effects to elements in a document. This package will work with essentially
any class file.

On the other hand, the sectsty package provides methods to customise
the section headers in the default BTEX classes (article, report, or book).
So, trying to use it with the memoir class, say, will result in it overwriting
|memoir’s method of creating section headers, and calamity will ensue.

To summarise, .cls and .sty files are loaded by KIEX to provide and
improve methods that are used to create documents. Generally speaking,
class files implement the specific structure of the document, whereas packages
are used to provide either generic functionality to any document, or to ‘style’

the methods provided by a specific class.

X. Gao
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* LaTeXHZH5|SE2EEM () . ARSISEFAMNESISTHT () 0 &
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(") . WAUE=PNEISFF (")
« 5| SHREFTEEH\thinspacetr @&
“"Max' I1s here."\\ ““Max’ is here.”
“\thinspace Max’ Is here.” “*Max’ 1s here.”
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EFR BA—EE-", R daughter-in-law
R WmAENEE— RM page 1-2

WIS MA=NREE---", %RW Listen—I'm serious
B8-S EA\dotsip <, MIE=PA=
one, two, three, ..., one hundred.\\  gne, two, three, ..., one hundred.

one, two, three, \ldots. one hundred. ©ne, two, three, ..., one hundred.
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o IEHRMEARFS\emphitext}, I1ECFE{EA S \textbf{text}

o ABARHME, BUEAEAESS\mathrm{xx}$

o AR ETS AN\om{x}$, FES|ANZE\usepackage{bm}
$z=f(\mathrm{x}\om{yH$ z = f(x,¥y)
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« X% S5MBRZ
« FAuemEEHHNGS

1 \uline{ TX|%&} \\ ‘Fk”?% .
o \uuline{M TX|%&3} \\ ﬂ?k”?ﬁ
s \dashuline{& T4I%&} \\ b P12k
4 \dotuline{ = TXIZ&} \\ =W E2%
5 \uwave{HE &} \\ {Ei{ﬁé£
6 \sout{MFr&} \\ Wﬂ#l”@é%

r \xout {4 &} SR

« FEIR uemBBEEX T \emph{lirS, FEEXRMFRIFETRT
T4, B ARIBHEBUERIBZT R T MoXRIBAR N TR%., @id

7 B EYnormalemie I o] IXBUEIX AN E B \usepackage[normalem}{ulem}
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=i, RITS5NER

« FlaTeXd, ZNTHRESHEAAL—T

o EflaTeXAERENTHARRTT, B8 A~w<SBKRIT, b Fig.~8"
« 17 LaTeX= BT (B3IEE)

c DR EE—BRNEREGATRINEE

Pattern design and feature detection.  Traditionally,
Icheckerboard [5, 6] and dot [19] patterns have been used|
for camera calibration. Feature detection in dot patterns is
however susceptible to perspective and lens distortion [21].
Recent research includes more robust detectors for checker-
board patterns [1 1, 24], the use of ridge lines for higher ro-
bustness against defocus [ 1 0], and calibration with low-rank]
textures [48]. Ha et al. [16] propose the use of triangular
patterns, which provide more gradient information for cor-
ner refinement than checkerboard patterns. Our proposed|
calibration pattern similarly increases the available gradi-
|ents, while however allowing to vary the black/white seg-
32 of 133 |Nov2021  [ment count, enabling us to design better features than [16]. By X. Gao
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_%_
s TXEEF—TEANTRE"FRS, tbadE\documentclassAYiIn A% & HY
12pt, LaTeX%GH 7 —RIEBXNFSH<S", JHM Tk

1t

&4 10pt | 11pt | 12pt
\tiny Spt | 6pt | Gpt

\scriptsize pt | 8pt | 8pt

\footnotesize | 8pt | 9pt | 10pt

\small Opt | 10pt | 11pt
\normalsize 10pt | 11pt | 12pt
\large 12pt | 12pt | 14pt
\Large 14pt | 14pt | 17pt
\LARGE 17pt | 17pt | 20pt
\huge 20pt | 20pt | 25pt
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- PiE
« {FEHxcolormBIAAEE, HEAKIES H\textcolor{color-name}{text}
* xcolorRBEMEXMEEINT

B black Bdarkgray | = lime pink B violet | jblue | Bgray
P magenta | fjpurple white S brown | flgreen | Jolive | Jred
yellow Ncyan lightgray | [lorange | [ teal

. TL,({%FH\deflnecolor{your color-nameH{RGBKR,G Blir S B EXENE
o ORI AR M HTIER

1 \textcolor{red!70}{ & & Z 704 & F\\
9 \textcolor{blue!50!black!20!white}
3 {5015 202304}

B2 70 411
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© RE

51

s 05|

fi£ A\label{labelname}ip LHEAIRET (FEMS Word HRFRABE") |
FH M 75 A\ref{labelname}g & \pageref{labelname}ip & #H 1T (3 X)
s|H, »3ls| AR FS5RERT 7 LAY T1AS

& —R T E W (section). A3 (equation). BF(figure/table)y5| A

\label{section:this}
\ref{section:this}
\pageref{section:this}

{5 Fmain text\footnote{footnote text}ag % LI
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o itemizeIfiz

1 \begin{itemize}

2 \item This is the 1st.

3 \item[-] And this is the 2nd.
4 \end{itemize}

e This is the 1st.
- And this is the 2nd.

* enumerateIfiz

1 \begin{enumerate} .

2 \item First 1. First

3 \item[Foo] Second Foo Second
4 \item Third

5 \end{enumerate} 2. Third

 descriptionEfiE

1 \begin{description}

’ e el Mgt sy LaTeX Typesetting System.

System. |
3 \item[wkl] A Man. wkl A Man.
14 \end{description} —
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EFVIRYN

c SEHEBERRSERET X AEE, REHSHR, MWBAE., ®F
TEMRTTAL 1 A A9 K0 B == A () 3

. )#E’\J*}?éi}%%figure%i%, FAEBDE RN RtableIfiE

. —EEIT RN F

\begin{table}[!htb]
\centering
\caption{table-cap}
\label{table-name}
\begin{tabular}{...}

= W b =

7 \end{tabular}
g \end{table}
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1 \begin{table}['htb]

2 \centering

3 \caption{table-cap}
4 \label{table-name}
\begin{tabular}{...}

\end{tabular}
\end{table}

-1

0o

« En{ftable MBI FIESE b X E:
o IRRABEEATSE (LR EBSEX — 1 Z I E AR F))
©  htbDFIFRTEALL . HATTERE. WATTEES, @htbRRMERHEA
that, BERBAZERT, REZXEAZITUE
« WHINEESEp, REAGFAFNERMA—]
«  LaTeXBIBRIASEZEtbp
c BAEREMFEAbpFHENSE, UREHIRE
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1 \begin{table}['htb]

2 \centering

3 \caption{table-cap}
4 \label{table-name}

5 \begin{tabular}{...}
6

7

8

\end{tabular}
\end{table}

* \caption{}fp L ERIE— R, SET R EAZD (Bltabularffiz) Z 87,
RSN TR IE LT

- WTFEAF, —WREEUBSEERABAGSH T FXE: \label}ds
LI Ecaption N 77, & NT] 88 H I o) &

39 of 133 | Nov 2021 By X. Gao
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° % );ll-
- B FBIENEHgraphicxg&= B F\includegraphics[I{}45 %>

1 \begin{center}
2 \includegraphics[width=0.8\1linewidth]{ThisPic}
3 \end{center}

« HRSHIEETERREHNOSFZITXFR. KM TT UIEE height
(BAS) | scale (RIFZEM{EED) | angle (BIRENETEEAR) F

o XFThispicENSEME %, LaTeXF.pdf, eps, .png, jpgBK Y EBE.
U BEHY EZNE K &FThisPicpng, WAl IUAREY EEZ, MEAR
LY RY, ¥R LEARMNNY RBREMNIRFARRIE R
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R
%L.

+ REBE
« R=MR (vector graphics, .SVG .PDF) vs. Hi}#&E (raster graphics, .JPEG .PNG)
s EXHE#iR L, BUELSETHRENENHZERERER, A50%
B HMAA R KRBT
« RRRRN, FEIAE
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AT

L3

=
« ~EHE: MSWord

« REEE: MSVisio

o HIEZMTE: MATLAB, Python Matplotlib
« 4T H: Adobe Acrobat Pro

@
®
Rp
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FENIR S EIER
- REE
« ~E=E:. MS Word
« RIEE: MS Visio
o HIEZMTE: MATLAB, Python Matplotlib
« 4IETH: Adobe Acrobat Pro

7 \
| IRA-Based Inner-sub-EG VSRA-Based Inter-Cluster
Rotation Averaging X Rotation Estimation
Community Detection- W « IRA-Based Inner-sub-EG VSRA-Based Inter-Cluster | IRA-Based Inter-sub-EG Rotation Global Alignment
Based EG Clustering J | 1 Rotation Averaging Rotation Estimation ] Rotation Averaging and Optimization

|

| . I

I' | IRA-Based Inner-sub-EG VSRA-Based Inter-Cluster I
Rotation Averaging Rotation Estimation I

i Inner- and Inter-Cluster Distributed Computation ;I
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( Aerial Map Construction

Original Frames

[ Reference Image Synthesis \

/
Vlrtual Camera Pose Computation \ I Graph Cut-based Image Synthesi

Extracted Frames

— — — — — — — —

/

4" iteration (105 images) 4
ST iteration (112 images) ,§

Ground Planes

=

.....

I
I
I
~L
I
I
: ] |

Wheel Odometry-based Image Retrieval and Matching

\RANSA(‘ -based PnP Camera Reglstratlon / \\ RANSAC-based PnP Camera Reglstratlon /
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>H

=
= X

« ~EE: MS Word

« SRFER: MS Visio

- HIBEHHTE: MATLAB, Python Matplotlib
« 4T HE: Adobe Acrobat Pro

700

—4— Neodj

—=— MongoDB

vl

x=1:1:5; Boor
a=[203.024,113.857,256.259,244.888,293.376];
b=[334.4,143.2,297.4,487.2,596.2];
plot(x,a,' -*b' x,b,"-or);

axis([0,6,0,700]);

set(gca, XTick',[0:1:6]);

set(gca, YTick',[0:100:700]);
legend('Neo4j’,'MongoDB); 200
xlabel(RE);
ylabel('Bf[E] (ms) ) 100

500

-
Q
o

300

[ (ms?

O OO N O WN -

[N

=
-
3]
w
B
o
=2}
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« REE: MS Word
e SHRFEE: MS Visio

n [1]: import matplotlib.pyplot as plt
n [2]:
n [3]:

I_II_II_II_I

n [4]: plt.plot(x_data,y_data)

x_data = [2011','2012','2013",'2014",'2015",'2016",'2017"]
y_data = [58000,60200,63000,71000,84000,90500,107000]

o FIESTE: MATLAB, Python Matplotlib
« 4T EH: Adobe Acrobat Pro

47 of 133 | Nov 2021

100000 4

90000 4

80000 -

70000 7

60000

T T T T
2011 2012 2013 2014

T
2015

T
2016

T
2017

By X. Gao



Tk 5 AR

- REE
« ~EE: MS Word
SRAEE: MS Visio
o HIEZMTE: MATLAB, Python Matplotlib
- 4T H: Adobe Acrobat Pro
* BfFA.POREIIFHITIUE R
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-

1 \begin{center}

2 \begin{tabular}[c]{|1llc||p{3em}

3 r@{-}} \hline\hline

1 A%B&C&d\D&E&F & AlBI C d-
g\\
\cline{1-2} D|E|F g
\multicolumn{2}{|c|HG}I&H&i\\ G 8]

5
6
7 \hline
8
9

\end{tabular}
\end{center}
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FEIA S5 E TR

© KRG

-~

\begin{center}
\begin{tabular}[c]{I|1llc||p{3em}
r@{-}} \hline\hline
A&B&C&d\D&E&F & AlBI C d-
g\\
\cline{1-2}
\multicolumn{2}{|c|}{G}&H&i\\ G H
\hline
\end{tabular}
\end{center}

= W o =

-
™
=y
U5

(=] o

=1

e o

* SEILHH
c OESZEXFAR RARE LIS METHMNISEXTF. IR5EER—
THEXFWNIE, XFERE5FRELmRESHN. ZHDOISSE(C]DFRET i
EE54RES. t=top, b=bottom, c=center
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\begin{center}
\begin{tabular}[c]{I|1llc||p{3em}
r@{-}} \hline\hline
A&B&C&d\D&E&F & AlB
g\\
\cline{1-2}
\multicolumn{2}{|c|}{G}&H&i\\ G H
\hline
\end{tabular}
\end{center}
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© ZHORH
+ BIEFHIBR BLTS|RERTEERE, EERMPELTS||"REN
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FEIA S5 E TR
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\begin{center}
\begin{tabular}[c]{I|1llc||p{3em}
r@{-}} \hline\hline
A&B&C&d\D&E&F & AlBI C d-
g\\
\cline{1-2}
\multicolumn{2}{|c|}{G}&H&i\\ G H
\hline
\end{tabular}
\end{center}
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. BHEP
+  fetabularMEERER, aF\hlineREZHI/K KL, < \clinefi-j} T & HltE
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*  FrtabularfERER, W& FH??EJ‘E?I‘T\EJL}\WLZ?%T SN S 153
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* multirowzf

1 % \usepackage{multirow}
2 \begin{center}
3 \begin{tabular}{lclclcl|}
4 \hline
5 \multirow{2}{2cm}{A Text!}
6 & ABC & DEF \\ A Toxt! ABC | DEF
7 \cline{2-3} & abc & def \\ ' abe def
8 \hline
9 \multicolumn{2}{lcl} Nothi XYZ
10 {\multirow{2}*{Nothing}} & oty
XYZ \\ Yz
11 \multicolumn{2}{|c|H} & xyz \\
12 \hline
13 \end{tabular}
14 \end{center}
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© KRG

* multirowzf

% \usepackage{multirow}
\begin{center}
\begin{tabular}{lclclcl}
\hline
\multirow{2}{2cm}{A Text!'}
& ABC & DEF \\ A Toxt! ABC | DEF
\cline{2-3} & abc & def \\ ' abe def
\hline
\multicolumn{2}{lc|} Nothi XYZ
{\multirow{2}*{Nothing}} & Dl
XYZ \\
11 \multicolumn{2}{|c|H} & xyz \\
12 \hline
13 \end{tabular}

 MREFNETEY|, ASFE\multirowss S HEE \multicolumn A &R
. Fﬁ\muItirovviFD\muIticolumM’EFH?i?ﬂé’\]1 1301%1, BEImMET M E R B TR
MNFAR. IRAES+REIHER, RrEBENTRE

©o 0o =T [=2] (91} He w %] =

[y
o

XYyZ
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* makecellZE

\begin{tabular}{ccc}
\Xhline{2pt}
\multirow{2}*{X} &
\multicolumn{2}{c}{Hey}\\ X Hey
\XCline{Q—S}{O.épt} Left nght
& Left & Right \\
\Xhline{1pt} a A B
a & A & B \\

b & C & D \\ b ¢ D
\Xhline{2pt}
\end{tabular}

{=] 0 o] | (=2} (91} He w %] =

[
= O

« ZEBRME T XhlineF\Xclinefs%, TiEEBEELNEL T MBI =43k
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« diagboxZ&=H

1 \begin{tabular}{clcc} ] =30

o \diagbox{Z# I FEIMHAHL} & A & A
B \\ X

\hline it

1 & A1 & B1 \\ 1 Al BI
2 & A2 & B2

\end{tabular} 2 A2 B2

= W

(=X T |
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0o =I [=2] (91} He w %] =

\begin{table}[!htb]
\centering
\caption{table-cap}
\label{table-name}
\begin{tabular}{...}

\end{tabular}
\end{table}

i=} 0 o] =1 [=2} (91} (== w %] =

— =
= =

\begin{tabular}{ccc}
\Xhline{2pt}
\multirow{2}*{X} &
\multicolumn{2}{c}{Hey}\\
\Xcline{2-3}{0.4pt}
& Left & Right \\
\Xhline{1pt}

a & A &B\\

b & C & D \\
\Xhline{2pt}
\end{tabular}

X

Hey

Left

Right

a

b

A
C

B
D
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o SRISHERR %S
CD | ECD LFD #V #F
AtlasO 1.487 | 1.866 | 3644.91 7446 14888
Atlas25 1.170 | 2.069 | 3436.14 2500 4050
OccNetso 2.538 | 6.245 | 3795.23 1511 3017
OccNetgy 1.950 | 6.654 | 3254.55 6756 13508
OccNetyos 1.945 | 6.766 | 3224.33 | 27270 54538
IM-NETj55 2.361 | 4.617 | 3700.22 1204 2404
IM-NETg, 1.467 | 4.426 | 2940.56 5007 10009
IM-NET 25 | 1.387 | 1.971 | 2810.47 | 20504 41005
IM-NETo5¢ | 1.371 | 2.273 | 2804.77 | 82965 | 165929
Ours 1.432 | 0.743 | 2939.15 1191 1913
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Method DA DC CD
Mean Var. Mean Var. Mean RMS
PSR(trim 8) 0473 1.33 0.327 0.220 3.16 12.5
PSR(trim 9.5) 0.330 0.441 0.345 0438 1.17 4.49

Ours 0.321 0.285 0.304 0.0888 1.46 442
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An Invitation to LaTeX

Xiang Gao, Lecturer
E-mail: xgao@ouc.edu.cn | Web: https://ouc-xgao.github.io/
College of Engineering, Ocean University of China
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TRAE 3] BT

* LaTeX—Ig
« LaTeXf&E1
* What?, Why?, How?, (Negligible)drawbacks, Hello world!
© WRERN
- REBRR, FEPE
© RARTH
* |EEE Trans., Springer 1JCV, IEEE CVPR, ACM SIGGRAPH, IEEE SPL
* LaTeX&A
« TAiRLaTeX
- WYEUERE, REFN, FEXK, Xt
© FRR5RIE
- 515, Wi, ERS5EE, fMESHEE, TH%SHR%
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TARAE [ BT
+ LaTeXEAl (£E)
-« BRI IEH
TR, RITE5DEKR
. FHhSHE
F5, A
- SIH5ER
RES55IH, WE
- R
itemize. enumerate. description¥fix
- FEESER
ik, BR, REE, k&
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7 SCHERR A ELAE
« %5

o LaTex#HERRT, RIS, 1, fi, fiERNE, EBIRIASETS f, 1, fi, fi
« EFEFEFBEAYDEETAES

It's difficult to find \ldots\\ It’s difficult to find ...
It's dif{}f{}icult to f{}ind \ldots It’s difficult to find ...
7 13]

© FARMEXEFEKRK, LaTeXstEHSUES DG, MREEER LS
WRETEMNE, {FAREar< \hyphenation{}

[1 \hyphenation{Hy-phen-a-tion FORTRAN} ]

* XMl F 5 Hyphenation, hyphenation 7t & == #f 4 Ui, B A 2 1k
FORTRAN, Fortran, fortran#f11d
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© TARR
c BAXBMAZIXERMHERSTR, TEBERANERBBA LSS, &N
TIHRR, TAAZXHNBELR:
[1 $...% =F \(...\) 5# \begin{math}...\end{math} ]
« —MIEFEE—FE_MMAR. Bl S\sum {i=1AMnfalis Dol a
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BN
o fTEIARMIRITINMAK, BEAI:

1 \[...\] 23 \begin{displaymath}...\end{displaymath}
5% amsmath £ #t#Y \begin{equation*}...\end{equation*}

b

« —MREEFEE TS, B \N\sum {i=1}"n{a_i})\] Za,,;

C EMEY, EEREARNAE, ARRTEGHERbEER AN, bt
MBEMFFSE L TR E

« MRTEARNFERS, FHequationIiFE, BEO]PUIRAFRE

\begin{equation}
\label{eq:NoExample}

| \epsilon|>M el > M (4.1)
\end{equation}

= W N =
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« FTmREREA
o BRENZ& AL BFN TR LR TR

1 $a”3_{ij}$ \\ a3
> ${a_{ij}} 3\text{=ra_{ijH{}"3$\\ a; 3ﬁ%
3 $\mathrm{e} "{x"2}\geq 1% :é > 1

« g, \phantom{(BERA A6, HAERTH TAIGS:

1 ${}"{12}_{6}\mathrm{C}$ \\ °C
2 ${}"{12}_{\phantom{1}6} 12Cj
3 \mathrm{C}$ \\ 03

i $2~3_{ij}$ \\ i,
5 $a"{\phantom{ij}3}_{ij}$ @;;
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o N EA\fraclalb}ir £ . A F FHamsmath £ € X # BV \dfrac{a}{b} .
\tfrac{fa{b}ap < K@ HIRBFITEIATN. FTRARN KNI EX

1 \[\frac{xH{y}+\dfrac{x}{y} z n z La

2 +\tfrac{a}{b}\] y oy "
- ZTIRIA\surdi i, EHEABZE\sqrt[l{}

1 $\sqrt{2} \gquad \surd$\\ \/Q \/

o $\sqrt[\betal{k}$ Ik
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o RZ& A< E A \underline}f\overline{}
« JKNFESFE Hbrace{"s{ & bracket["fX%line, #a0\underbrace{}

1 $\overline{m+n}$ \\ m+n
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\[ Ixl = \left\{

\begin{array}{rl} :

_ —x ifx <0,
-x & \text{if } x < 0,\\ _
0 & \text{if } x = 0,\\ 2] = 0 iftz=0,
x & \text{if } x > O. r if x> 0.
\end{array} \right. \]
\[ Ixl| =
\begin{cases} ( —r ifx <O,

-x & \text{if } x < 0,\\
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1 \begin{align}
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&= a*a \notag \\
&= an?
\end{align}

o~ N

\

~

74 of 133 | Nov 2021

a*=a-a (1)
= a’ (2)



HEARm<

%ﬁﬁﬁ&ﬁ%%

+ alignEREBXITFEZHAN, BRFSHN&ZIN, RANZEHHEIE:
\begin{align}

a &1 & b&2 &c&3 \\
d &=-1 & e &=-2 & f &=-5
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\begin{equation}

\begin{aligned}

a &= b + c \\ a=0b+c

d &=.e + ? + g \\ d*ZZG—Fj?+-g Gylg)
h+1é& j+ k\\ hti=j+k

l+mé& n

\end{aligned} [+m=n

\end{equation}
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[*
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Mean Local Ratio (o = 2)

Mean Local Log-Ratio (o = 2)
Mean Local Norm-Dist-Sq (o0 = 2)
Mean Local Ratio (o = 4)

Mean Local Log-Ratio (o = 4)
Wavelet Sum (¢ = 3)

Mean Wavelet Log-Ratio (£ = 3)
Our Model

=0
0.222
0.222
0.221
0.212
0.213
0.194
0.185
0.251

higher is better

<1
0.578
0.579
0.576
0.565
0.566
0.520
0.504
0.610

<9
0.776
0.776
0.773
0.773
0.774
0.731
0.718
0.809

<4

lower is better

MAE

RMSE

0.932
0.932
0.928
0.940
0.941
0.922
0.922
0.957

2.181
2.176
2.202
1.923
1.916
2.019
2.003
1.570

5.184
5.178
5.097
3.920
3.917
3.558
3.239
2.529
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Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training
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Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun;. Proceedings of the IEEE Conference on
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Abstract

Deeper neural networks are more difficult to train. We present a residual learning framework to ease the
training of networks that are substantially deeper than those used previously. We explicitly reformulate the
layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced
functions. We provide comprehensive empirical evidence showing that these residual networks are easier
to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers-—8x deeper than VGG nets but still having lower
complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result
won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with
100 and 1000 layers. The depth of representations is of central imporiance for many visual recognition
tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the
COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC &
COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection,
ImageNet localization, COCO detection, and COCO segmentation.
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Algorithm 1 Optimization with Filter Method

AN

7§_/fiRns:o:;ll.liras:: Initial solution x°, filter margin v, max_iter
o EEHERRZ S - Initialization: ¢ <= 0, F <~ (), F < ()

2: while true andt < max_iter do

3 if x? is stationary then

4: break:

5: end if

6: f — fi — ahy; 3’} — hy — ahy

7. F+« FU{(f,h)} ) )
- Fu « {x|f(x) > f.h(x) > h}

9: F+FU Ft_|_1

10:  Compute x!™! & F (Sec. 5.2.1 and 5.2.2)

1. if f(x*1) < f(x?) then

12: F(—F\{(fh)},F{—F\Fg_|_1

13:  end if

14:  t<+—t+1

15: end while

16: return x'
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