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• Rotation averaging[1] estimates the absolute camera

orientations given the relative rotation measurements.

• It is non-trivial because some of the relative rotations

in the Epipolar-geometry Graph (EG) are outliers.

• Existing methods either seek to design robust loss

functions to make the optimization process more

robust[2-3] or try to develop effective filtering

strategies to clean the outlier-contaminated EG[4-5].

• In order to achieve a more accurate and robust

absolute rotation estimation, we present a novel

rotation averaging pipeline, which is inspired by the

well-developed incremental SfM techniques.

• Instead of estimating all the absolute rotations

simultaneously like traditional rotation averaging

methods, they are estimated in an incremental way.
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• Given an EG, 𝒢 = 𝒱, ℰ , where each vertex 𝑣𝑖 ∈ 𝒱
corresponds to a camera with an absolute rotation 𝑹𝑖

to estimate, and each edge 𝑒𝑖𝑗 ∈ ℰ links a matched

image pair with a relative rotation measurement 𝑹𝑖𝑗.

The rotation averaging problem here is defined as:

𝑹𝑖
∗ = argmin 

𝑣𝑖,𝑣𝑗∈𝒱

𝑒𝑖𝑗∈ℰ

𝑑𝜃
2 𝑹𝑖𝑗 , 𝑹𝑗𝑹𝑖

T .

• The 𝑹𝑖𝑗 inlier/outlier criterion is defined as:

𝑹𝑖𝑗 = ቐ
𝑹𝑖𝑗
𝕀 if 𝑑𝜃 𝑹𝑖𝑗 , 𝑹𝑗

∗𝑹𝑖
∗T ≤ 𝜃𝑡ℎ

𝑹𝑖𝑗
𝕆 if 𝑑𝜃 𝑹𝑖𝑗 , 𝑹𝑗

∗𝑹𝑖
∗T > 𝜃𝑡ℎ

.

Overview

• Input: relative rotation measurements and the feature 

match number on each EG edge, 𝑹𝑖𝑗 , 𝑛𝑖𝑗 𝑒𝑖𝑗 ∈ ℰ .

• Output: optimized absolute rotations, 𝑹𝑖
∗ 𝑣𝑖 ∈ 𝒱 .

Reference

Data l1-IRLS[2] l1-IRLS(l0.5)
[3] WRST-RA[4] OMSTs-RA[5] IRA l1-IRLS(l0.5) w/ IRA

ALM 2.12 2.14 2.11 1.26 0.83 1.23 

ELS 1.02 1.15 1.32 0.75 0.51 0.52 

MDR 2.75 3.08 35.38 1.12 0.85 1.02 

MND 0.77 0.71 1.03 0.68 0.51 0.55 

NYC 1.43 1.40 4.51 1.30 1.00 1.11 

PDP 2.19 2.62 1.48 1.73 0.90 1.30 

PIC 2.38 3.12 14.40 1.41 1.67 1.63 

ROF 1.59 1.70 10.55 1.85 1.51 1.48 

TOL 2.55 2.45 4.08 2.10 2.45 2.45 

TFG 1.85 2.03 13.25 2.63 3.30 3.22 

USQ 4.34 4.97 15.39 3.83 4.40 4.22 

VNC 4.47 4.64 3.63 3.30 1.02 1.06 

YKM 1.71 1.62 2.90 1.55 1.57 1.44 

CPS 2.06 2.05 1.24 2.35 1.24 1.75 

SNF 3.05 3.56 15.07 3.26 2.06 2.36 

Conclusion

Comparison experimental results of the final rotation averaging accuracy in degrees

• A simple yet effective rotation averaging pipeline, IRA,

is presented, which shares similar workflow with the

incremental SfM, thus it is accurate in parameter

estimation and robust to measurement outliers as well.

• Several key techniques are proposed to push the results

further for the particular rotation averaging assignment.


