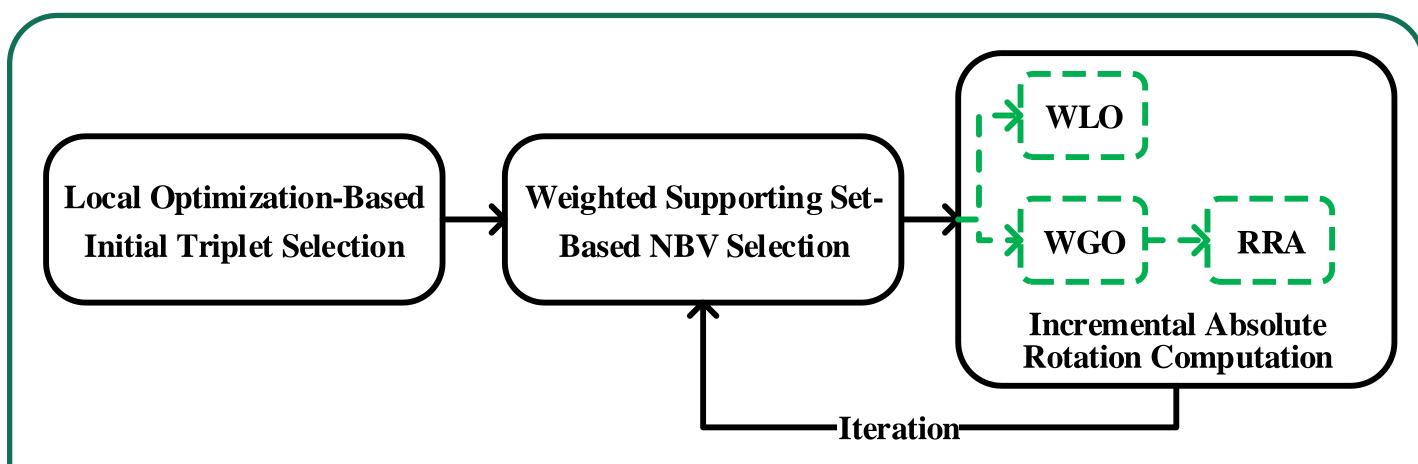


Xiang Gao¹, Lingjie Zhu^{2,3}, Zexiao Xie¹, Hongmin Liu^{4,*}, and Shuhan Shen^{2,3,*} ¹College of Engineering, Ocean University of China ²NLPR, Institute of Automation, Chinese Academy of Sciences ³School of Artificial Intelligence, University of Chinese Academy of Sciences ⁴School of Automation and Electrical Engineering, University of Science and Technology Beijing Method Introduction

- **Rotation averaging**^[1] estimates the absolute camera orientations given the relative rotation measurements.
- It is non-trivial because some of the relative rotations in the Epipolar-geometry Graph (EG) are **outliers**.
- Existing methods either seek to design **robust loss** functions to make the optimization process more robust^[2-3] or try to develop effective filtering strategies to clean the outlier-contaminated EG^[4-5].

- In order to achieve a more accurate and robust absolute rotation estimation, we present a novel rotation averaging pipeline, which is inspired by the well-developed incremental SfM techniques.
- Instead of estimating all the absolute rotations simultaneously like traditional rotation averaging methods, they are estimated in an **incremental** way.

Preliminary


• Given an EG, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where each vertex $v_i \in \mathcal{V}$ corresponds to a camera with an absolute rotation R_i to estimate, and each edge $e_{ij} \in \mathcal{E}$ links a matched image pair with a relative rotation measurement R_{ii} . The rotation averaging problem here is defined as:

$$\{\boldsymbol{R}_{i}^{*}\} = \arg\min \sum_{\substack{\boldsymbol{v}_{i}, \boldsymbol{v}_{j} \in \mathcal{V} \\ e_{ij} \in \mathcal{E}}} d_{\theta}^{2} (\boldsymbol{R}_{ij}, \boldsymbol{R}_{j} \boldsymbol{R}_{i}^{\mathrm{T}}).$$

• The
$$\mathbf{R}_{ij}$$
 inlier/outlier criterion is defined as:

$$\mathbf{R}_{ij} = \begin{cases} \mathbf{R}_{ij}^{\mathbb{I}} & \text{if } d_{\theta}(\mathbf{R}_{ij}, \mathbf{R}_{j}^{*}\mathbf{R}_{i}^{*\mathrm{T}}) \leq \theta_{th} \\ \mathbf{R}_{ij}^{\mathbb{O}} & \text{if } d_{\theta}(\mathbf{R}_{ij}, \mathbf{R}_{j}^{*}\mathbf{R}_{i}^{*\mathrm{T}}) > \theta_{th} \end{cases}$$

Overview

Input: relative rotation measurements and the feature

Data	ℓ_1 -IRLS ^[2]	$\boldsymbol{\ell}_1 \text{-} \text{IRLS}(\boldsymbol{\ell}_{0.5})^{[3]}$	WRST-RA ^[4]	OMSTs-RA ^[5]	IRA	ℓ_1 -IRLS($\ell_{0.5}$) w/ IR.
ALM	2.12	2.14	2.11	1.26	0.83	1.23
ELS	1.02	1.15	1.32	0.75	0.51	0.52
MDR	2.75	3.08	35.38	1.12	0.85	1.02
MND	0.77	0.71	1.03	0.68	0.51	0.55
NYC	1.43	1.40	4.51	1.30	1.00	1.11
PDP	2.19	2.62	1.48	1.73	0.90	1.30
PIC	2.38	3.12	14.40	1.41	1.67	1.63
ROF	1.59	1.70	10.55	1.85	1.51	1.48
TOL	2.55	2.45	4.08	2.10	2.45	2.45
TFG	1.85	2.03	13.25	2.63	3.30	3.22
USQ	4.34	4.97	15.39	3.83	4.40	4.22
VNC	4.47	4.64	3.63	3.30	1.02	1.06
YKM	1.71	1.62	2.90	1.55	1.57	1.44
CPS	2.06	2.05	1.24	2.35	1.24	1.75
SNF	3.05	3.56	15.07	3.26	2.06	2.36

Conclusion

A simple yet effective rotation averaging pipeline, IRA, is presented, which shares similar workflow with the incremental SfM, thus it is accurate in parameter estimation and **robust** to measurement outliers as well.

match number on each EG edge, $\{\mathbf{R}_{ij}, n_{ij} | e_{ij} \in \mathcal{E}\}$.

- Output: optimized absolute rotations, $\{\mathbf{R}_i^* | v_i \in \mathcal{V}\}$.
- Several key techniques are proposed to push the results further for the particular rotation averaging assignment.

Reference

[1] R. Hartley, J. Trumpf, Y. Dai, and H. Li. Rotation Averaging[J]. International Journal of Computer Vision, 2013, 103: 267–305.

[2] A. Chatterjee and V. M. Govindu. Efficient and Robust Large-Scale Rotation Averaging[C]. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013: 521–528.

[3] A. Chatterjee and V. M. Govindu. Robust Relative Rotation Averaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018 40(4): 958–972.

[4] V. M. Govindu. Robustness in Motion Averaging[C]. In Asian Conference on Computer Vision (ACCV), 2006: 457–466.

[5] H. Cui, S. Shen, W. Gao, H. Liu, and Z. Wang. Efficient and Robust Large-Scale Structure-from-Motion via Track Selection and Camera Prioritization[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2019, 156: 202–214.