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About Me

* Xiang Gao, Lecturer

* Education
« 2008.09-2012.06: College of Engineering, Ocean University of China, Bachelor
* 2012.09-2015.06: College of Engineering, Ocean University of China, Master
e 2015.09-2019.06: Institute of Automation, Chinese Academy of Sciences, Doctor
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About Me

* Xiang Gao, Lecturer

* Research Interests
3D ComputerVision
» Large-Scale Structure from Motion

* Multi-source Data Fusion-Based Large-Scale 3D Reconstruction
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About Me

* Xiang Gao, Lecturer

Selected Publications

Xiang Gao, Lingjie Zhu, Zexiao Xie, Hongmin Liu*, and Shuhan Shen*. Incremental Rotation
Averaging. International Journal of Computer Vision (IJCV), 2021. (CCF-A, IF: 7.410, h5-index: 72)
Xiang Gao, Shuhan Shen*, Yang Zhou, Hainan Cui, Lingjie Zhu, and Zhanyi Hu. Ancient Chinese
Architecture 3D Preservation by Merging Ground and Aerial Point Clouds. ISPRS Journal of
Photogrammetry and Remote Sensing (P&RS), 2018. (IF: 8.979, h5-index: 82)

Xiang Gao, Lihua Hu, Hainan Cui, Shuhan Shen*, and Zhanyi Hu. Accurate and Efficient Ground-
to-Aerial Model Alignment. Pattern Recognition (PR), 2018. (CCF-B, IF: 7.740, h5-index: 99)

Xiang Gao, Shuhan Shen*, Lingjie Zhu, Tianxin Shi, Zhiheng Wang, and Zhanyi Hu. Complete
Scene Reconstruction by Merging Images and Laser Scans. IEEE Transactions on Circuits and
Systems for Video Technology (TCSVT), 2020. (CCF-B, IF: 4.685, h5-index: 77)

Xiang Gao, Lingjie Zhu, Hainan Cui, Zexiao Xie, and Shuhan Shen*. IRA++: Distributed
Incremental Rotation Averaging. IEEE Transactions on Circuits and Systems for Video Technology

(TCSVT), 2021. (CCF-B, IF: 4.685, h5-index: 77)
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Several Important Concepts

e Computer Vision (CV)
* CVis a field of computer science that works on enabling computers to see,
identify and process images in the same way that human vision does, and

then provide appropriate output
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Several Important Concepts

e Computer Vision (CV)

* Highly related areas:
 Artificial Intelligence (Al)
» Pattern Recognition (PR)
« Computer Graphics (CG)
* Image Processing (IP)
* Robotics (RO)
* Remote Sensing (RS)
* Multimedia (MM)
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Several Important Concepts

* Impact Factor (IF)

* IF measures the average number of citations received in a particular year by

papers in the journal during the two preceding years

* Homepage: https://jcr.clarivate.com/
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Several Important Concepts

* Impact Factor (IF)
» |IF measures the average number of citations received in a particular year by
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e Takethe 2019 IF of IEEE TPAMI for example
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https://jcr.clarivate.com/

Several Important Concepts

e hb5-index
* h5-index is the h-index for articles published in the last 5 complete years. It
is the largest number h such that h articles published in 2015-2019 have at

least h citations each

* Homepage: https://scholar.google.com/citations?view_op=top_venues&hl=en

« Alternate Homepage: https://sc.panda321.com/citations?view_op=top_venues&hl=zh-CN
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Several Important Concepts
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Publication

Nature

The New England Journal of Medicine
Science

The Lancet

|IEEE/CVF Conference on Computer Vision and Pattern
Recognition

Advanced Materials

Nature Communications

Cell

Chemical Reviews

Chemical Society reviews

Journal of the American Chemical Society
Angewsndte Chemie

Proceedings of the National Academy of Sciences
JAMA

Mucleic Acids Research

Physical Review Letters

International Conference on Learning Representations
Journal of Clinical Oncology

Renewable and Sustainable Energy Reviews
Energy & Environmental Science

Neural Information Processing Systems

ACE Nano

Nature Materials

The Lancet Oncology

Nano Letters

Advanced Energy Materials

Nature Genetics

Scientific Reports

|EEE/CVF International Conference on Computer Vision
PLoS ONE

Nature Medicine

Advanced Functional Materials

h5-

. media

n
552
639
526
493

509

369
166
M7
438
363
324
316
299
137
475
238
359
300
263
289
77
257
233
300
241
250
266
226
295
237
238
221

33,
34,
35,
36.
37,
38,
39,
40.
41,
42
43,
44,
45,
48,
47.
48,
49,
50.
51.

52.

53.
54.
55.
5.
57
58.
59.
60
61.
62,
63.
64
65.
6.

International Conference on Machine Learning {JCML)
The Astrophysical Journal

Circulation

Journal of the American College of Cardiology
Journal of Materials Chemistry A

Mature Nanotechnology

ACS Applied Materials & Interfaces

Journal of High Energy Physics

Nature Biotechnology

Journal of Cleaner Production

Neuron

European Heart Journal

Applied Catalysis B: Environmental

MNature Neuroscience

Nature Methods

=[N

Accounts of Chemical Research
Gastroenterology

Physical Review D

Blood, The Journal of the American Society of
Hematology

Cochrane Database of Systematic Reviews
Nano Energy

American Economic Review

ACS Catalysis

Manthly Notices of the Royal Astronomical Society
European Conference on Computer Vision
Nature Photonics

Computers in Human Behavior

Applied Energy

Science Advances

Nature Physics

Chemistry of Materials

IEEE Communications Surveys & Tutorials

Environmental Science & Technology

171 309
167 234
166 260
164 232
161 218
160 272
160 200
158 208
154 268
154 208
154 199
153 245
153 189
152 219
151 242
150 222
148 220
148 222
148 208
148 192
147 218
147 192
146 227
146 207
146 193
144 286
144 245
144 198
143 185
142 213
140 217
140 189
138 248
138 185
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47. Mature Reviews. Molecular Cell Biology 137 264
68. Immunity 137 204
g9, Cell Metabolism 137 1%
70. Mature Climate Change 138 213
71. Science Translational Medicine 138 202
72 E.‘lecelfi)ng of the Assaociation for Computational Linguistics 138 220
73. Chemical engineering journal 134 171
T4, Maolecular Cell 133 181
75. Clinical Cancer Research 133 177
T6. Chemical communications (Cambridge, England) 132 158
77 :Etléﬁ;;gggactions on Pattern Analysis and Machine 131 261
78. Science of The Total Environment 13 178
79. Manoscale 1341 189
50. IEEE Communications Magazine 130 180
&1, NMature Immunaology 130 1a9
82.  Journal of Hepatology 130 188
&3, European Urology 130 187
&4, The Journal of Clinical Investigation 130 179
85, Mature Energy 128 235
86. The Lancet Infectious Diseases 129 189
%7. |EEE Transactions on Industrial Electronics 128 174
88. Cell Reports 128 185
59, Physical Review B 128 156
a0, Mature Reviews Cancer 127 248
91. Diabetes Care 127 2009
92 The Journal of Physical Chemistry Letters 127 183
93. Circulation Research 127 187
94, Annals of the Rheumatic Diseases 127 183
95. elife 127 159
96,  AAAl Conference on Artificial Intelligence 126 183
97. Bioinformatics 125 207
93. Annals of Oncology 125 189
09. Mature Reviews Immunology 124 265
100, Gut 124 183
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Several Important Concepts

- hs- DS
Publication index %dla

1.  Nature 376 5;2
2. The New England Journal of Medicine 365 639
3. Science 356 526
4 Thelancet 301 493
5 ::IEE;:I;L C;‘r;ll; r?onference on Computer Vision and Pattern 209 500
. Advanced Materals 273 369
7. Nature Communications 273 366
8 Cell 289 M7
9. Chemical Reviews 267 438
10.  Chemical Society reviews 240 368
1. Journal of the American Chemical Society 236 324
12, Angewandte Chemie 229 316
13. Proceedings of the National Academy of Sciences 228 299
14 JAMA 220 337
15.  Mucleic Acids Research 219 475
16. Physical Review Letters 209 288
I 17. International Conference on Learning Representations 203 359
18. Journal of Clinical Oncology 202 300
19. Renewable and Sustainable Energy Reviews 201 262
20. Energy & Environmental Science 199 289
I 21.  Meural Information Processing Systems 198 377
22, ACS Nano 193 257
23, Mature Materials 184 283
24, The Lancet Oncology 183 300
25 Mano Letters 183 21
26.  Advanced Energy Materials 181 250
27. Mature Genetics 180 266
28, Scientific Reports 178 226
29, |EEE/CVF International Conference on Computer Vision 176 295
30. PLoS ONE 175 237
31, Mature Medicine 173 288
32, Advanced Functional Materials 17 221

33.  International Conference on Machine Learning (JCML) 171 308
34, The Astrophysical Journal 167 23
35, Circulation 166 260
38. Journal of the American College of Cardiology 1684 232
37, Journal of Materials Chemistry A 161 218
38, Mature Nanotechnology 160 272
| 39, ACS Applied Materials & Interfaces 160 200
40, Journal of High Energy Physics 158 209
41.  Mature Biotechnology 154 269
42 Journal of Cleaner Production 154 208
43, Meuron 154 199
44, European Heart Joumnal 1583 245
45 Applied Catalysis B: Environmental 153 189
46.  Mature Neuroscience 152 219
47, Mature Methods 151 242
43, BMJ 150 222
48 Accounts of Chemical Research 149 220
50. Gastroenterology 148 222
51. Physical Review D 148 208
| 52 EI:;:,tJI;S;oumal of the American Society of 148 192
53. Cochrane Database of Systematic Reviews 147 218
54. Nano Energy 147 192
| 55, American Economic Review 146 227
58. ACS Catalysis 146 207
57, Monthiy Notices of the Royal Astronomical Society 146 193
58. Eurogean Conference on Computer V@nn 144 286
59. Mature Photonics 144 245
6. Computers in Human Behavior 144 198
61. Applied Energy 143 185
G2, Science Advances 142 213
| §3. Nature Physics 140 217
g4,  Chemistry of Materials 140 189
65. |EEE Communications Surveys & Tutorials 138 248
G6. Environmental Science & Technology 138 1858
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Categories > Engineering & Computer Science » Computer Vision & Pattern Recognition = ®

b S

"
S e Publication 2 O 2 O h5-index  h5-median dﬁ:
—
1. IEEE/CVF Conference on Computer Vision and Pattern Recognition 299 509
2. IEEE/CVF International Conference on Computer Vision 176 295
3 European Conference on Computer Vision 144 206
4 IEEE Transactions on Pattern Analysis and Machine Intelligence 131 261
5 IEEE Transactions on Image Processing 13 156
6. Pattern Recognition 85 126
T IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 73 110
8. International Journal of Computer Vision 70 150
9. Medical Image Analysis 67 115
10. Pattern Recognition Letters 59 al
1. Eritish Machine Vision Conference (BMVC) LY al
12. Workshop on Applications of Computer Vision (WACWY) b4 a7
13. IEEE International Conference on Image Processing (ICIP) 52 71
14. IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) x| 5
15. Computer Vision and Image Understanding 50 a7
16. Journal of Visual Communication and Image Representation 45 60
17. IEEE International Conference on Automatic Face & Gesture Recognition 4 64
18. International Conference on 3D Vision 37 G5
19. Image and Vision Computing 36 b5
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IEEE/CVF Conference on Computer Vision and Pattern Recognition
European Conference on Computer Vision

IEEE/CVF International Conference on Computer Vision

IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE Transactions on Image Processing

Pattern Recognition

IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition Werkshops
(CVPRW)

Medical Image Analysis

International Journal of Computer Vision

British Machine Vision Conference (BMVC)

Pattern Recognition Letters

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
IEEE International Conference on Image Processing (ICIP)

IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
Computar Vision and Image Understanding

Journal of Visual Communication and Image Representation

Intzrnational Conference on 3D Vision (30V)

Intarnational Conference on Pattern Recognition

Asian Conference on Computer Vision (ACCV)

IEEE International Conference on Automatic Face & Gesture Recognition
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Several Important Concepts

 |Fvs. h5-index

* Publications with more papers per year tend to have higher h5-index
* |F:11.079, h5-index: 111, papers in 2017 and 2018: 649 (IEEE TCYB)
« |F:11.148, h5-index: 67, papersin 2017 and 2018: 263 (Elsevier MIA)
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Several Important Concepts

 |Fvs. h5-index

« Several extraordinary papers would result in high IF

* However, for high h5-index, much more good papers are need
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Several Important Concepts

 |Fvs. h5-index

* Only the citations of official publications are used for IF computation

* However, for h5-index, citations in arXiv papers, and even in zhihu, are used
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Several Important Concepts

* China Computer Federation (CCF) List

» List of International academic conferences and periodicals recommended

Homepage: https://www.ccf.org.cn/en/Bulletin/2019-05-13/663884.shtml
Computer Architecture/Parallel and Distributed Computer/Storage
Computer Networks

Network and Information Security

Software Engineering/System Software/Programming Language
Database/Data Mining/Content Retrieval

Computer Science Theory

CAD & Graphics and Multimedia

Artificial Intelligence

Human Computer Interaction and Pervasive Computing

Cross-disciplinary/Comprehensive/Emerging
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The List of International Academic Periodicals Recommended by CCF

GHELER 2L 2 54

CAD and Graphics & Multimedia

1. Class A
. Abbr. of L .
No. Full Name of Journals Publishing House Website
Journal =
1 TOG ACM Transactions on Graphics ACM hittp://dblp uni-trier de/db/journals/tog/
2 TIP IEEE Transactions on Image Processing IEEE http://dblp.uni-trier. de/db/journals/tip/
IEEET 1 Visualizats dC
3 TVCG fansactions °’(‘3T “L‘:‘ zation and Lompuler IEEE htp://dblp uni-trier.de/db/journals/tveg/
aphics
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The List of International Academic Periodicals
and Conferences Recommended by CCF
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The List of International Academic Conferences Recommended by CCF
GHEILERZ S 254
CAD and Graphics & Multimedia
1. Class A
No. | Abbr. of Conf. Conferences Organizer Website
1 ACM MM ACM International Conference on Multimedia ACM http://dblp. uni-trier.de/db/conf/mm/
2 SIGGRAPH ACM SIGGRAPH Annual Conference ACM http://dblp.umi-trier.de/db/conf/siggraph/index html
3 VR IEEE Virtual Reality IEEE http://dblp.uni-trier.de/db/contive/
4 IEEE VIS IEEE Visualization Conference IEEE http://dblp.uni-trier de/db/conf/visualization/index html
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The List of International Academic Periodicals
and Conferences Recommended by CCF 46/70
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The List of International Academic Periodicals Recommended by CCF
(ATEH
Artificial Intelligence
1. Class A
Abbr. of B} . .
No. Full Name of Journals Publishing House Website
Journal =
1 AT Artificial Intelligence Elsevier http://dblp.uni-trier de/db/journals/ai/
IEEE T; P Analysis and Machi
2 TPAMI fans on Fatem Analysis and Machune IEEE http://dblp.uni-trier. de/db/journals/pami/
Intelligence

3 ucv International Journal of Computer Vision Springer http://dblp uni-trier. de/db/journals/yyev/

4 JMLR Journal of Machine Learning Research MIT Press http://dblp uni-trier de/db/journals/jmlr/
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The List of International Academic Periodicals
and Conferences Recommended by CCF 49/70

O O 109 [ UCT cUcl DY A. U0




@ =
~ » — 3}y Y
1 H T+ EAE R E R EAR W
The List of International Academic Conferences Recommended by CCF
ab
(ANTITERR
Artificial Intelligence
1. Class A
No. Abbr. of Conf. Conferences Organizer Website
AAAT Conference on Artificial B o ) »
1 AAAT . AAAT http://dblp uni-trier de/db/conf/aaar/
Intelligence
Annual Conference on Neural _ o ) o
2 NeurIPS . L MIT Press http://dblp umi-trier de/db/confinips/
Information Processing Systems
Annual Meeting of the
3 ACL Association for Computational ACL http://dblp uni-trier. de/db/conf/acl/
Linguistics
IEEE Conference on Computer ) o , . .
4 CVPR o o IEEE http://dblp uni-trier.de/db/conf/cvpr/
Vision and Pattern Recognition
International Conference on _ o ) B
5 ICCV o IEEE http://dblp.um-trier.de/db/confiicev/
Computer Vision
International Conference on ) o o ]
6 ICML . ) ACM http://dblp uni-trier de/db/conf/ieml/
Machine Learning
International Joint Conference on ) o o R
7 IICAT . . Morgan Kaufmann hitp://dblp um-trier de/db/conf/ijcar/
Artificial Intelligence
op [ NS R bR AR 2 DU T H 3
The List of International Academic Periodicals
and Conferences Recommended by CCF 34/70
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Several Important Concepts

* China Computer Federation (CCF) List

» List of Chinese academic periodicals recommended

25 of 163 | ¢

CCF ##HFE+H R HAT B R

A %
Fs HAT) & R FhE Ptk
- oh E R F PRk R 55 B )
1 R qﬂi‘l'ﬁ‘;ﬂﬁ%n http://www jos.org.cn
. - hETEIFEE .
2 EHHER hER S E AR http://cjc.ict.ac.cn
. hERFRE
3 ERlZE: EafE :
FERE: FEHE AR R ERS http://infocn.scichina.com
R o e FERFERTEEA AT _ .
4 HEIMRS LR PEEAES http:/lerad.ict.ac.cn
. .  ssi s FETEIFE _ )
5 WEAEE T S ERF R B S E AR http://www.jcad.cn
6 BTFiR PERFFEE http://www.ejournal.org.cn
. FEBEES
7 = : .aas.net.
Skl =i e http://www.aas.net.cn
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Recommended Journals & Conferences

 Journals

» IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
IEEE, IF: 17.861, h5-index: 131, CCF-A

* International Journal of Computer Vision (1JCV)
*  Springer, IF: 5.698, h5-index: 70, CCF-A
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Recommended Journals & Conferences

 Journals

» IEEE Transactions on Image Processing (TIP)
IEEE, IF: 9.340, h5-index: 113, CCF-A

« Pattern Recognition (PR)
Elsevier, IF: 7.196, h5-index: 85, CCF-B
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Recommended Journals & Conferences

 Journals

* Computer Vision and Image Understanding (CVIU)
*  Elsevier, IF:3.121, h5-index: 50, CCF-B

* Image and Vision Computing (IVC)
*  Elsevier, IF:3.103, h5-index: 36, CCF-C

» Pattern Recognition Letters (PRL)
*  Elsevier, IF: 3.255, h5-index: 59, CCF-C
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Recommended Journals & Conferences

 Related Journals

Artificial Intelligence: IEEE TNNLS, IEEE TCYB
Computer Graphics: ACM TOG, IEEE TVCG, Wiley CGF
Robotics: SAGE IJRR, IEEE TRO, IEEE RAL, Elsevier RAS
Remote Sensing: ISPRS P&RS, IEEE TGRS, I[EEE GRSL
Multimedia: IEEE TMM, IEEE TSCVT
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Recommended Journals & Conferences

 Conferences

» IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
*  h5-index: 299, CCF-A

» IEEE/CVF International Conference on Computer Vision (ICCV)
* h5-index: 176, CCF-A

*  European Conference on Computer Vision (ECCV)
*  h5-index: 144, CCF-B
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Recommended Journals & Conferences

 Conferences

*  British Machine Vision Conference (BMVC)
h5-index: 57, CCF-C

* International Conference on 3D Vision (3DV)
h5-index: 37, CCF-C

* Asian Conference on Computer Vision (ACCV)

h5-index: 33, CCF-C
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Recommended Journals & Conferences

 Conferences

»  IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
. h5-index: 299, CCF-A
»  IEEE/CVF International Conference on Computer Vision (ICCV)
. h5-index: 176, CCF-A
*  European Conference on Computer Vision (ECCV)
. h5-index: 144, CCF-B
*  British Machine Vision Conference (BMVC)
. h5-index: 57, CCF-C
* International Conference on 3D Vision (3DV)
. h5-index: 37, CCF-C
* Asian Conference on Computer Vision (ACCV)
h5-index: 33, CCF-C
* |IEEE International Conference on Image Processing (ICIP)
*  h5-index: 52, CCF-C
* International Conference on Pattern Recognition (ICPR)
*  h5-index: 35, CCF-C
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Recommended Journals & Conferences

* Related Conference
 Artificial Intelligence: ICLR, NeurlIPS, ICML, AAAI, 1JCAI
 Computer Graphics: SIGGRAPH, SIGGRAPH Asia
* Robotics: RSS, ICRA, IROS
* Remote Sensing: ISPRS Archives, ISPRS Annals
e Multimedia: ACM MM, ICME
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Reviewing Process

* Journal Papers

e Manuscript submitted
« Associate Editor-in-Chief (AEiC) assigns papers to Associate Editor (AE)
* AE assigns papers to reviewers

* First round review: several months (or years)

* Acceptasis (rare cases)

*  Accept with minor revision (rare cases)
*  Majorrevision

*  Resubmit as new

* Reject

» Second round review: several months

* Acceptasis

e  Accept with minorrevision
*  Majorrevision (rare cases)
*  Resubmit as new

* Reject

Editor-in-chief (EiC) makes final decision
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Reviewing Process

* Conference Organization
* General Chairs (GCs): administrating conference = Journal EiC
e Program Chairs (PCs): handling papers = Journal AEiCs
* Workshop chairs
* Tutorial chairs
* Website chairs

 Publication chairs

* Area Chairs (ACs) = Journal AEs

*  Assign reviewers
* Read reviews and rebuttals

* Recommendation
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Reviewing Process

* Conference Papers

Manuscript submitted

PCs assign papers to ACs

ACs assign papers to reviewers

First round reviewing: About two months
Rating and Rebuttal: About one week
Second round reviewing: About one month

Author notification
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Reviewing Process

* AC Meetings
« Each paperisreviewed by 2/3 ACs
* ACs make recommendations
* PCs make final decisions
* ACs know the reviewers and the reviews are weighted

 Based on reviews and rebuttal

* Accept: decide oral later
* Reject: don’t waste time

* Go either way: lots of papers

* Usually agree with reviewers but anything can happen as long as there are

good justifications
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Reviewing Process

* More About Conference Papers

* Doubleor Single blind review

* Double blind review for relatively good conferences
* CVPR,ICCV, ECCV, BMVC, ACCV, 3DV, etc.

* Single blind review for others
* |CIP, ICPR, etc.
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Reviewing Process

* More About Conference Papers

* Acceptrate
e 20%+-30% for top conferences (CVPR, ICCV, ECCV, etc.)
*  40%-50% for good conferences

¢ 99%+-99.99% for ‘purchasable’ conferences
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Reviewing Process

* More About Conference Papers

* Oral or Poster
?‘“*muvﬂ‘”zg’g’-

Cy

Batched Incremental
Structure-from-Motion

Hainan Cui, Shuhan Shen, Xlang Gao, and Znany Hu
ances

LPR, Institute of Automation, Chinese Academy of St
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Reviewing Process

* More About Conference Papers

Poste I’S/O raIS As before, papers were accepted as orals and posters

purely based on the quality. There were no caps set in the
paper decision process.

e 6,424 registered (vs. 5,165 in 2019)

e 5,865 valid submissions (vs. 4,538 in 2019)

e 1,467 accepted (25.0%)

e 335orals (5.7%) Registered vs accepted last 10 years
B 2015 (B 200 B Submitted [l Accepted

6,424 6424

6000
5165

4000 - 3300

2680

2123 2145
1933
1798 1807
2000 1677 1467

Registered Reviewed Accepted (25%) Oral (<6%)
201 2012 2013 2014 2015 2016 2017 2018 2019 2020
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Reviewing Process

e More About CVPR 2020

Author Distribution

Authors by country/region

France

1.3%

India
15% Lo
Singapore
1.7%
Japan
1.7%
Hong Kong SAR
2.0%
Australia
2.0%
Canada
2.2%
Germany

3.1%

United Kingdom
3.1%

Kaorea

38% R
Unspecified 9
6.2% i
United States

22.7%

Authors by organization (top 10)

Tsinghua University

Google

Shanghai Jiao Tong University

Peking University

Zhejiang University

Facebook

University Of Science And Technology Of China
Carnegie Mellon University

Beihang University

Xidian University

0 100 200 300 400
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Reviewing Process

e More About CVPR 2020

Reviewer Distribution

Reviewers by country/region Reviewers by organization (top 10)

Singapore

1.7% Google
Ita;z:a Facebook
France

2.1% United States Tsinghua University
Switzerland 34.3%

2.2% Carnegie Mellon University
Australia

2.2%
Hong Kong SAR Amazon
2.2%

Japan MIT
2.6%
Korea Adobe
2.7%

Canada
2.8%
Germany
3.6%

Stanford University

University Of Oxford
United Kingdom

5.8% . The Chinese University Of Hong Kong
Unspecified ‘Chlrla
6.4% 204% 0 25 50 75 100 125
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Reviewing Process

e More About CVPR 2020

AC Distribution

ACs by country/region ACs by organization (top 10)

United Kingdom

Google
Facebook

Adobe

: Mi ft
2.0% ) United States 1croso

India INRIA

Simon Fraser University
Microsoft Research
Stony Brook University

Princeton University

Carnegie Mellon University

Unspecified
12.7%

15
e 35 women
e Increasingly more ACs in Asia
45 of 163 | Oct 2021 By X. Gao



Reviewing Process

e More About CVPR 2020

General Chairs

Terry Boult Gerard Medioni Ramin Zabih
UCCS Amazon & USC Cornell & Google

Program Chairs

Ce Liu Greg Mori Kate Saenko Silvio Savarese
Google SFU & Borealis Al Boston University Stanford University
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Reviewing Process

e More About CVPR 2020

Area Chairs

THEERPEEFEIRA2M I 0 M
GIER AN NERRREAS
i-nﬂ@lﬁlﬂqilﬂ 2 & 1P

“ 4 l
\ /e
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Reviewing Process

* More About CVPR 2020

Area Chairs (continued)

'ﬁﬂg&gﬁfi
ﬂalﬁl@liﬂlﬁll.&.gt

A@Iﬁ@ﬂﬁIlﬁBHIIllﬁ
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More About CVPR 2020

By X. Gao

AC meeting at UCSD
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Reviewing Process
* More About CVPR 2020

Popular Areas

MULTIVIEW UNSUPERVISED opop MASHINE

TRANSFER IMAGE prpnesenTaTION
IIE(:IIENITIIIH LOWSHOT SYNTHESIS

mmaﬂicﬂllll ““nmssl[.ﬂg‘nlrlzls"rﬁmu
BODY I.EAI““"G FACEVIDED
ANALYSIS 30“'3'0" SHAPE SINGLE

nouet CATEGORIZATION owtit

METHODS SEV1 GROUPING APPLICATIONS
ARCHITECTURES  POSE ROBOTICS EFFICIENT
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Reviewing Process

* More About CVPR 2020

Distribution of subject Areas

Recognition (detection, categorization)
Transfer/Low-shot/Semi/Unsupervised Learning
Face, gesture, and body pose

Image and video synthesis

Low-level and physics-based vision
Segmentation, grouping and shape

3D from multiview and sensors

3D from a single image and shape-from-x
Vision + language

Efficient training and inference methods for networks
Video analysis and understanding

Scene analysis and understanding
Representation learning

Action and behavior recognition

Medical, biological and cell microscopy

Motion and tracking

Adversarial learning

Machine learning architectures and formulations
Vision for robotics and autonomous vehicles
Computational photography

Image retrieval

Vision applications and systems

Datasets and evaluation

Optimization and learning methods

Neural generative models

Explainable Al

Biometrics

Vision + other modalities

Fairness, accountability, transparency and ethics in Vision
Visual reasoning and logical representation

0 200 400 600 800
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Reviewing Process

e More About CVPR 2020

e 31 tutorials

Tutorial Website
Deep Learning and Multiple loannis Pitas http:/ficarus.csd.auth.gr/cvpr2020-tutorial-deep-
Drone Vision learning-and-multiple-drone-vision/

RAMNSAC in 2020 Jiri Matas, Ondrej Chum, Tat-Jun Chin, Reng Ranftl, Dmytro Mishkin, Daniel Barath http:/fcmp.felk.cvut.cz/cvpr2020-ransac-tutorial/
Vision Models for Emerging IMarcelo Bertalmio https://www.upfedu/web/marcelo-bertalmio/cvpr-

Mediza Technologies and Their
Impact on Computer Yision

2020-tutorial

67 workshops

19-
Jun

Half-day
{marning)

Full-day

Half-day
(afternoon)

Full Schedule

15th |IEEE Computer Society Biometrics
Workshop

1éth IEEE CVPRWorkshop on
Perception Beyond the Visible Spectrum

2nd CVPR Workshop on 3D Scene
Understanding for Vision, Graphics, and
Robotics

Bir Bhanu, Alay Kumar https://vislab.ucr.edu/Biometrics2020/index.php
Riad I. Hammoud, Michael Teutsch, Angel D. Szppa, i Ding http://vcipl-ckstate.org/pbvs/20/

Siyuan Huang, Chuhang Zou, Hao Su, Alexander Schwing, Shuran Song, Jizjun W, https://scene-understanding.com

Siyuan Qi Yixin Zhu, David Forsyth, Derek Hoiem, Leonidas Guibas, and Song-Chun Zhu

June 1%th, Ful
Day

June 14th, Ful
Cay

June 15th, Ful
Cay




Reviewing Process

e More About CVPR 2020

Code submission!

e Opportunity for authors to voluntarily submit their code

e Out of all of submitted papers, 730 were coupled with code
uploads.
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Reviewing Process

e More About CVPR 2020

Code submission!

e Opportunity for authors to voluntarily submit their code

e Out of all of submitted papers, 730 were coupled with code
uploads.

* Talkis cheap, show me the code!
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Reviewing Process

e More About CVPR 2020

Code submission!

e Opportunity for authors to voluntarily submit their code

e Out of all of submitted papers, 730 were coupled with code
uploads.

* Talkis cheap, show me the code!

© PEDH, MWK
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Journal Papers vs. Conference Papers

 Comprehensive study and evaluation * Novel idea and convincing evaluation
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Journal Papers vs. Conference Papers

* Longer reviewing and revising period * Shorter reviewing (and rebuttal) period
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Journal Papers vs. Conference Papers

* Unscheduled reviewing process * Scheduled reviewing process
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Journal Papers vs. Conference Papers

Less uncertainty in quality * More uncertainty in quality
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Journal Papers vs. Conference Papers

* Time for next submission preparation * Meeting and presentation opportunity
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Journal Papers vs. Conference Papers

Included in SCIl and with IF
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Novel idea and convincing evaluation
Shorter reviewing (and rebuttal) period
Scheduled reviewing process

More uncertainty in quality

Meeting and presentation opportunity

Higher h5-index for top conferences

By X. Gao



How to Structure a Paper?

« State which problem you are addressing, keeping the audience in mind
* They must care about the problem, which means that sometimes you must tell them

why they should care about it
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How to Structure a Paper?

« State briefly what the other solutions are, and why they aren't satisfactory

« If they were satisfactory, you wouldn't need to do the work
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How to Structure a Paper?

* Explainyour solution, compare it with other solutions, and say why it's better

* Only better performance is not enough, its reason is more important
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How to Structure a Paper?

 How to write a IEEE/ACM T-level CS paper?
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REIRELT T —1PAZRINideafHNAISEIILAN SR, BIAK T RMESNENERT. HE
NN EERRE—EAIRETLUSTER.

B, (FREEANECHNERREBNARITISESN, RIEEEAERACMAY. BFEIEEERIY
FREHAACM W ERNERBRAR, FBENRERICZRIEIZEINAICall For Papers
FIFME—E, Fa2NEKE, S2FAMLatexsiE& WordBRLAREEZ AN E—FRFIFERAM
B, AEBHmSE.

HE5EZR, SANECNRXENESFLARGE ML (community) RITEBIEHA, X3EPR
EFRENNENRRE, BHEEERENE (problem) M5%E (idea) . BEELUIGIEE

(1) HEEEHIRFES Tk, XEHERTEIntroduction EEEFTEQEERARN
contributions, TEAAJRERFNEIL, e, FklaERAIARBMNIinsights, {FES
contributionsfYRHZEIRANEEREIEEREC, FTLAREERRE T problem&E SFIEN, XLEFHAT
LlgtEEIntroduction BE1ETE,

X#EIntroductionft 587 7, tbalis: FEEEMEBLFFHFEN— NI, XPMRaEENER
blah, blah, blah, ZEI&FRINCIEFIXNEAZH T =BT EASE (5| BETEE
EL=FEN) . FMHRAAERARHMT ——=, BRFMN, FTMHEEALRESMT N,
BEREHNT=, F=TRALERH T —=N, EEMREERE. EXEXES, KiHEE—
HRECRIFH AR —— =R A E. BT EERIIX MRS =20 R HF——
=PURER NEFHERERY. ELUMRR T EE, SR EFTRYSEIR, #BeILA. HEARI AR
mLAEHZcontributions, IBZEABEFAINSE EXFAILLT . &ETEIntroREIN_EEEREAR,
ERIMRE—EREBXTIE, B=EE25A, . . .

—RRiIntroERLUEEE—E8XT{E (Related Work) . MERRelatedfNiE3ZFFRERE, LLaN
HUA BRI =, XEEEEEIHAVE, Related Work REiZHKIK (e.g., BETideaA, Z
F7Tidea B, AATIidea C) , MEDTLLRNXLNSST, @RS BRI RS,

By X. Gao


https://www.zhihu.com/question/22790506/answer/81787300?utm_source=wechat_session&utm_medium=social&utm_oi=791301804792086528&utm_content=group1_Answer&utm_campaign=shareopn

How to Get Your CVPR Paper Rejected?

e Do not
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How to Get Your CVPR Paper Rejected?

e Do not

* Putyourself as a reviewer
 What does the reviewer knows so far?

* What does the reviewer expect next and why?
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How to Get Your CVPR Paper Rejected?

e Do not

e Pay attention to review process
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How to Get Your CVPR Paper Rejected?

e Do not

e Deliver what you promise
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How to Get Your CVPR Paper Rejected?

e Do not

 Completely provide important references
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How to Get Your CVPR Paper Rejected?

e Do not

» Carry out sufficient amount of experiments

71 of 163 | Oct 2021 By X. Gao
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How to Get Your CVPR Paper Rejected?

e Do not

Put yourself as a reviewer

Pay attention to review process

Deliver what you promise

Completely provide important references
Carry out sufficient amount of experiments

Compare with state-of-the-art algorithms

72 of 163 | Oct 2021
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How to Get Your CVPR Paper Rejected?

* Donot
e Putyourself as a reviewer
e Pay attention to review process
* Deliver what you promise
 Completely provide important references
e Carry out sufficient amount of experiments
* Compare with state-of-the-art algorithms

* Pay attention to writing

73 of 163 | Oct 2021 By X. Gao
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Review Form

 Summary
* Overall Rating
«  Definite accept, weakly accept, borderline, weakly reject, definite reject
* Novelty
* Veryoriginal, original, minor originality, has been done before
* Importance/relevance
*  Ofbroad interest, interesting to a subarea, interesting only to a small number of attendees, out of scope
* Clarity of presentation
* Readsvery well, is clear enough, difficult to read, unreadable
* Technical correctness

»  Definite correct, probably correct, contains rectifiable errors, has major problems

« Experimental validation

*  Excellent validation, limited but convincing, lacking in some aspects, insufficient validation

Additional comments
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Review Form

 Summary

* Overall Rating

«  Definite accept, weakly accept, borderline, weakly reject, definite reject

 Novelty

* Veryoriginal, original, minor originality, has been done before

* Importance/relevance

*  Ofbroad interest, interesting to a subarea, interesting only to a small number of attendees, out of scope

* Clarity of presentation

* Readsvery well, is clear enough, difficult to read, unreadable

e Technical correctness

»  Definite correct, probably correct, contains rectifiable errors, has major problems

 Experimental validation

*  Excellent validation, limited but convincing, lacking in some aspects, insufficient validation

Additional comments
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Novelty

* How to carry out a novel work?

 Someonetold you itis notso hard:
» Read the papers of your research area extensively
* Find aresearch direction you interested in and has never been done

* Thatiswhatyou need!

- Yourinovel

L — @ .
—_researchlidea
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Novelty

* How to carry out a novel work?

 Someone told you itis not so hard:
* Read the papers of your research area extensively
* Find aresearch direction you interested in and has never been done

 Thatis what you need!

* However,...
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Novelty

* How to carry out a novel work?

* Then, you continue reading and reading, ...

* Whenyou really have read large numbers of papers, you will see:
* Theideas of high-impact papers are usually different from each other

* Theroutines of low-impact papers are usually similar

— Y ) ! have
gmﬂm% v L ) ! ) ) ’ “5:", :n’rt
I | W~ = A improved upon
R AR ‘ ' \ L\ e
"N — I \ : p — e
1AL : I¢’s an \ - A< | another hot
BANEREMESE, [t S g | .
TORASHSER! " K eos omelatie, | .= 2 /\ \ A A
Voila! | put a — s .
eanniniesngs W oo o o reked ) | — CER L

delicate! The dish is made

un 7;;?,,2;’,'1‘!“"‘ o ——al using only chickens who are the third J Ay ket N N P
7 N — daughter afgmh’ hens named }X]é%&%*%é%%'
“ | ' ' HeelsE b AR B init
e 4t ro) o
e e T

"iE! BELTSR N
THREEE, XBEEM
... sMesEtSe. - %_:J;Ek:gjg;k

i iy
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Novelty

* Whatis new in this work?

* New pipeline, new method, new data, new metric, etc.
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Novelty

« What are the contributions (over prior art)?

* Higher accuracy, significant speed-up, scaleup, stronger robustness, ease to
implement, less sensitive to parameter, generalization, wide application

domain, connection among seemingly unrelated topics, etc.
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Novelty

* New pipeline, new method, new data, new metric, etc.

* Higher accuracy, significant speed-up, scaleup, stronger robustness, ease to
implement, less sensitive to parameter, generalization, wide application

domain, connection among seemingly unrelated topics, etc.

* Make a compelling story with strong supporting evidence

* Then, how to tell a compelling story?
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Novelty

* Make a compelling story with strong supporting evidence
* Then, how to tell a compelling story?
* Learn from the voice of China!
* Compelling Story
« Sufficient Evidence

* Amazing Demonstration
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Novelty

* Theimportance of telling a compelling story
« ICML with one line of code! /() = |J(0) — b| + b
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Novelty

* Theimportance of telling a compelling story

« ICML with one line of code! /() = |J(0) — b| + b
* Compelling story

loss loss !
| l\dmb qip-_, 1 5 ?A] []E’] \r_,"‘ ;f" Vo
\ test loss | LS Mest loss
\ !-I - test loss
' .~ test loss f“
~ training R4 "
training|” [c] Nloss > |¥ .
T S “'J‘ training loss [l raining loss
Y 058 L » O i hd > ol l‘\I..» T __ . Iflooded dre . .
EPOCh EPOCh ' " Epochs " ’ ® Epochs . ®
(a) w/o Flooding (b) w/ Flooding  (c) CIFAR-10 w/o Flooding (d) CIFAR-10 w/ Flooding]

Since it is a simple solution, this modification can be incorporated into existing machine
learning code easily: Add one line of code for Eq. (1), after evaluating the original objective
function J(@). A minimal working example with a mini-batch in PyTorch [Paszke et al., 2019] is
demonstrated below to show the additional one line of code:

i outputs = model (inputs)

» loss = criterion(outputs, labels)

; flood = (loss-b).abs()+b # This is it!
; optimizer.zerograd()

s flood.backward()

: optimizer.step()
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Novelty

* Theimportance of telling a compelling story
« ICML with one line of code! /() = |J(0) — b| + b

o Sufficient evidence

function. £ can be the zero-one loss, Definition 1. The flooded empirical risk &5 defined as' A Proof of Theorem B Bayes Risk for Gaussian Distributions
tulo,#):= {0 MEmA_x @ Rig) - |Rig) b +b ® Proof. 1 the flooding level is b, then the proposed flooding estimator is In this section, we explain in detail haw we derived the Bayes risk with respect Lo the surrogate
1 otherwise. ” . h N loss i the experiments with Gaussian data in Section 4.1, Since we are using the logistic loss in
2 Note that when § - 0. then /i(g) ~ R(g). The gradient of /i(g) w.r.. model parameters will Rig) - |Rig) - ¥ + b 12 Yo ettt it the lous of the sl s i the it
where v~ (11, vx)7 € R¥, or a surrogate los such as the softmax cross-entropy loss, point to the same direction as that of (g) when R(g) > b but in the opposite direction when R ) _ ) .
’ Rig) < b. This means that when the learning objective is abave the flooding level, we perform i afiplaii o opers mas(a,t) g tyslx)) 1+ exp{—yg(=))) (28)
oy ® gradient descent s usual (gravity zone), but when the learning objective is below the flooding propased estimaor can be re-expressed as, .
= Level. we perform gradient ascent instead (buoyancy zone). b 2 maxi Rig), b) - A A - Bie). 13) where glx) : R 52 scalar instead of the vector definition that was used previously, bec
For a surrogate loss £, we denote the classification risk by The issue is that in general, we sekdom know the optimal flooding level in advance. This == - - o " the synthetic experiments onby consider binary classification. Take the derivative to derive,
Rlg) = Exayllig(x).y [0} issue can be mitigated by searching for the optimal flooding level b* with a hyper-parameter For convenience, we used A {1(g), b). From the definition of MSE,
i : optimization technique. In practice, we can search for the optimal looding level by performing _ X yespl—yal)) | | .
where Ey..,)|| is the expectation aver (z, y) ~ p(, y). We use Hoi(g) to denote Eq. (4) when the exhaustive search in paralle, MSE(Rig)) ~ E[(R(g) - Rig))" 14 Trexpweta)l[*|? o

£~ gy and call it the classification error.
“The goal of multi-class classification is to learn g that minimizes the classification error oy (g)

Rig)) s

In optimization, we consider the minimization of the risk with a almost surely d.m..»muu: 3.3 Implementation ) - Rig))’) s o
surrogate loss R(g) instead to make the problem more tractable. Furthermore, since plr, ) is For large scale problems, we can employ mini-batched stochastic optimization for efficient com. E|A(Fig) + Rig))| + E|(Fig) + Rig)y un
omaly kvt nd there o0 wa o xacly skt Rig),we iz s empiscalvrsion putation, Suppose that we have Af disjoint mini-batch splits. We denote the empirical risk (5) e iterested 1t : ]
Gplcniated] fom Wik taaiting duts selon with respect to the m-th mini-batch by .. (g) for {1,..., Af}. Then, our mini-batched o inbevestad in e sgn o
. 1S s optimization performs gradient descent updates in the direction of the gradient of f..(g). By the MSE( fi(g)) — MSE(Rig)) \Rilg)Rig 24(Rig) + Rig))). 1% 1 .
Rig):= =3 tgl) ] convexity of the absolute value function and Jensen’s inequality, we have | e ST o0
o £ Define the inside of the expectation as B AR(g)Rig) — A* + 24(Rig) + Rig)). B can be -
where {(z, are iid. sampled from p(ar, y). We call 7 the empirical risk. o <L 3° (1Rete) -8+8) o divided into two cases, depending on the outcome of the max operator Pl = ) ply —p(x) 1)
We would like to clarify some of the undefined terms used in the title and the introduction. / g 7 gl + ‘R 4
“The “train/test loss” is the empirical risk with respect to the surrogate loss function £ over the #(g)Rig) @7 + 1R(g)(Kig) + Rlg)) i Rig) s to zero. divide by p(z) > 015 ol
training/test data, respectively. We refr to the "training/test error” as the empirical risk with This indicates that mini-batched optimization will simply minimize an upper bound of the full “ { 1Rig)Rig) 187 + 4b(Rig) + Rig i b o Set this 1o 2ero, divide by pl) > 0 to obuain,
pect to fy; over the training/test data, respectively (which is equal to one minus accuracy) batch case with R(g’ o . on
[Zhang, 2004). { - - o ! (20) =plaiz] ‘
Finally, we formally define the Bayes risk as 3.4 Theoretical Analysis 1Rig)Rig) — 1 + #{Rig) + Rig)) if -
R~ inf R(h ® 1o the Solliwing thiorena; we will ibiow il e sawens aoired ervios (USE) of the propiaiied siak {" _— i “; gl 2 b o
e s e e S e o estimator with flooding is smaller than that of the original risk estimator without floodis 4(b- Righie - Rig)) i Rig)<b o0
reflerred 1o as the Bayes error if the zero-one loss is used: Theorem 1. Fix any measurable vector-walued function g. If the flooding level b satisfies R(g) The latter case becomes pesitive when Rig) < b < R(g) b< Rig)
i & b< Rig), wehave N Since we are intercsted in the surrogate loss under this classifier, we phug this into the logistic
o d MSE(R(g)) > MSE(Rt(g)) (10) MSE(R(g)) - MSE Agn=0 (22 Ioas, to obtain the Bayes risk,
z MSE{F(g)) = MSE(R(g)) @)
32 Algorithm 16 < Rig), we have Elftyaz . L el 069
MSE(R(g)) ~ MSE(Rig)) an When b < Rig). e =) iy
With flexible models, R(g) w.rt. a surrogate loss can easily become small if not zero, as we : . N
mentioned in Section 1; see [C] in Fig. 1(a). We propose a method that "floods the bottom area A proof i given in Appendix A. If we rogand Rig) as the training loss and R(g) as the tes MSE(R(g)) - MSE(Rig)) > 0 e In the experiments in Section 4.1, we report the empirical version of this with the lest dataset as
and sinks the original empirical risk” as in Fig. 1(b) o that the empirical risk cannot go below Joss, we would want b to be between those two for the MSE to improve MSE( R(g)) ~ MSE(F(g)) a5 the Bayes risk.
the flooding level. More technically, if we denote the flooding level as b, our proposed training - o iicreat oo g (8). simce Eq. 1) can ignore comstast terms of the criginl conpiica
objective with flooding is a simple fix isk We will efer Yo 4. (5 for the floccing operator forthe rest of the peper o
7 8 ® 20
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¥ and ). The se
t used fo the experiment. W stands for weight decay, E stands for ety stoppen

* means that fooding level of zero was optimal "N/A” m we skipped the
o weight decay was ptimal i the case without flooding. The best and equivalent
are shown in bold by comparing “with flooding” and *without flooding” for two columns with the same
nd E. e the frst and ffth coumas out of the 8 columns. The best performing combination

e
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helps the late-stage training improve test accuracy
We also conducted experiments with early stopping. meanis

recorded during training. The results a
Table 2. Compared with sub-table (A), we sce that early stopping improves the bascline method
without flooding well in many cases. This indicates that training longer without flooding was

barmful in our experiments. On the other hand, the accuracy for flooding combined with early
stopping is often at with early stopping. meaning that training until the end with
flooding tends to be already as good as doing so with early stopping The table shows that flooding
often improves or retains the test accuracy of the baseline method without flooding even after
deploying carly stopping. Flooding docs not hurt performance but can be benefical for methods
used with carly stopping

{a) MNIST {0.00) (d) MNIST (0.03)
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“ o | —
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Figure 4: Learning curves of training and test loss. The frst figure in each row is the leaming curves
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level increases towards the right-hand side. -
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Figure s
ortest los). Each poist (" or “+

) in the figures corresponds to a single model at a certain epoch. We
remove the first § epochs and plot the rest. “o" is used for the method with flooding and *+* is used for
the method without fooding. The large black *6" and *+* show the epochs with early stopping. The color

« (purple —» yellow) as K-M,C10, and C100 stand for Kizushiji-MNIST,
CIFAR-10, and CIFAR-100.

(3) MNIST (tais)

MNIST(test) ()  Kuroshis-MNIST@)  Kusushifi-MNIST
train) (test)

(€)CIFAR-10 (train)  ()CIFAR-10(test) () CIFAR-100 (train)  (h) CIFAR-100 (test)

(8) SVEIN (train)

Figure 6: One-dimensional visualization of flatness. We visualize the training/test loss with respect to
perturbation. We depactthe results fox 3 models: the model whe the empirical sk with respect to training
data is below the flooding level for the firsttime during training (dotted blue), the moded at the end of
training with Booding (solid blue), and the model at the end of training without flooding (sold red).
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Previous Review

» Several Important Concepts
* CV,IF, h5-index, CCF recommended list
* Recommended Journals & Conferences
* Journals and conferencesin CV and other related areas
* Reviewing Process
« Journal/conference reviewing process
* Something more about conference papers and CVPR2020
« Journal Papers vs. Conference Papers
« Evaluation, reviewing period, quality, etc.
* How to Structure a Paper?
* Introduction, related work, method and evaluation
* How to Get Your CVPR Paper Rejected?
* Review Form of a Conference Paper

* Novelty: Make a compelling story with strong supporting evidence
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e Killer dataset
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* Large-scale experiment
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Experimental Validation

e Evaluation metric
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* Me: Hereis a faster horse
* R1:Youshould have used my donkey

« R2:Thisisnota horse, it’s a mule
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Learn from Reviews

* You will never know what would happen in your reviews
* Me: Hereis a faster horse
* R1:Youshould have used my donkey
« R2:Thisisnota horse, it’s a mule

e R3:lwantaunicorn!
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Learn from Reviews

* Be able to find valuable comments/suggestions (even few) from a

mass of (useless) ones
« Submit your manuscript to good journals/conferences
* Focusonthe process rather than the outcome

* Accept the valuable comments/suggestions to improve the manuscript and

unhesitatingly discard others
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 Revision Submitted

2021.09.17, 8 pages) > Accept (2021.10.06

Dear Editors and Reviewers,:

Many thanks for the valuable comments, the manuscript has been revised accordingly. The
following is our reply ta the specific comments by the editars and reviewers. In the revised text,
the changed parts are marked in RED.-

For the Reviewer #1:

R1Q1: It seems that the proposed IRA++ is a simple combination of HRRA and IRA. In
particular, IRA++ uses the same framework of HRRA (including finding the cluster graph and
estimation of Inter-cluster rotations). The only difference is that TRA++ replaces the
RANSAC-based rotation averaging in some places of HRRA with the IRA solver. Thus, it looks to
me that the novelty of the proposed method is limited as the proposed method is a heuristic
combination of existing methods. I hope the authors can clarify the contribution and novelty of
this worle.

A: Thanks for the comment. In the revised text, the contributions of this work are made more
clarified. They lie in the following three folds: 1) A upgraded version of IRA, termed as IRA++, is
presented based on the thought of divide and conquer, to deal with the drifting and efficiency
issues of IRA in large-scale situations. 2) The original IRA method is tightly integrated into this
novel pipeline to solve the low-level Inner-sub-EG rotation averaging problems locally and the
high-level inter-sub-EG rotation averaging problem globally. 3) Our proposed IRA++ is tharoughly
evaluated and achieves overall best performance in both efficiency and accuracy compared with
several other state-of-the-art rotation averaging methods. In addition, note that though IRA++
and HRRA share similar divide and conquer strategy and framework, their motivations and
technical insights are different. For HRRA, the core rotation averaging solver, RANSAC-based
rotation averaging. could be regarded as a global solver, as it performs outlier filtering and
rotation optimization globally. In that way, the clustering operation in HRRA is used to
constrain the size of the random spanning tree, by which the all-inlier minimal set is more
likely to be selected. However, For [RA++, the core rotation averaging solver is IRA, which is an
incremental solver and suffers from drifting and efficiency issues in large-scale situations. As a
result, the divide and conquer strategy in IRA++ is mainly employed to deal with these

exclusive issues of incremental parameter estimation pipeline.-

R1Q2: The estimation accuracy of IRA++ without global optimization is still comparable to that
of IRA. Thus, even though it achieves the top accuracy, the improvement seems incremental
compared to IRA. This implies that the final global optimization plays an important role on
improving the accuracy. Indeed. the difference in accuracy between IRA++ with/without GO is
more significant than the difference between IRA++ without GO and IRA. However, this

abserved importance of the final global opti isabit ictory to the mativation of

this work. In particular, from table 2 the authors claim that partitioning the graph nodes
improves the graph connectivity statistics of Wilson etal. and thus the divide-and-conquer
strategy makes rotation averaging easier. From this point of view, the final global optimization
would make the connectivity statistics worse again, but it turns out that this step has more
significant improvement on the overall accuracy and 1 find this a bit confusing. It is possible
that the inter-cluster rotations are not estimated accurately due to the sparse connections
between the clusters, or it is possible that the graph structure indicator does not fully explain
the hardness of the rotation averaging problem in the new distributed setting (for example
statistics based on graph connection Laplacian could be better suited, as it simultaneously
considers the graph connectivity and rotation consistency). In any case, | believe that a more
careful investigation and explanation is needed in this regard.

A: Thanks for the comment. Please note that global optimization is usually a necessary step in
divide and conguer strategy-based pipeline. That is because without considering all the
constraints globally, the divide and conquer strategy-based pipeline’ solution is easy to fall into
local minima, which would result in the loss of estimation accuracy. In addition, for the IRA++
method considered here, though the accuracy of IRA++ \wo GO is nat extremely high, it is good
enough to serve as initialization and filter out outlier for the global optimization to achieve
obvious accuracy improvement. Please note also that global optimization is iteratively
performed on the original [RA, including the final global optimization with all absolute rotation
estimated, and thus it is not quite fair to directly compare the accuracy of IRA and IRA++ \wa
GO. As for the graph connectivity evaluation, the indicator we used stems from the graph
Laplacian, and it is only used to compare the graph connectivity of the EGs used in IRA and
IRA++. In addition, we think that the accuracy improvement after global optimization of IRA++
is not contradictory to the problem hardness discussed in this work. That is because when
discussing the hardness of a rotation averaging problem, the estimation initial guess and
measurement outlier label is supposed to be unknown. However, the problem of IRA++ with

only global optimization left is not the case. With the quite accurate estimation initial guess and

measurement outlier label, its hardness is undoubtedly much lower than the original problem
of IRA and the sub-problems of IRA%+.:

R1Q3: In table 5, none of other distributed methods (except HRRA) are compared. It seems
that other global methods can also be applied to inner/inter-cluster rotation estimation,
following the same framewaork of this work and HRRA. Have the authors tried other methods
(e.g IRLS-S\ell_{\frac{1}{2}}$}) using the same divide and conquer strategy? I am curious
IRA++. This

about the speed and accuracy of such implementation and how that compares wi
could verify the critical
method.

(IRA or distri L ion) of the propossd

A: Thanks for the comment. We locally implement a distributed version of the IRLS-#:, which is

achieved by alternating the IRA-based inner- and inter-sub-EG rotation averaging steps in

IRA#+ to IRLS-:-based ones. In the revised text the distributed IRLS-f; is compared with IRA,
IRA++, and RLS-#; in both efficiency (TABLE IV) and accuracy (TABLE VI). From the
comparison experiments we can see that though distributed [RLS- £, achieves better
performance in both efficiency and accuracy than IRLS-fy, our proposed RA++ sil achieves

top performance, which demonstrate the effectiveness of both the divide and conquer pipeline
and the [RA-based key steps.-

R1Q4: The comparison between IRLS-GM and IRLS-$\ell_{\frac12}3 is contradictory to that of
that paper; IRLS-$\ell_{\frac12}§ works significantly
better than [RLS-GM on 1DSMM dataset. However, table § shows a different story using the same

“rabust rotation averaging, 2018". |

dataset. Is there any difference between the implementation of IRLS in the two papers?s

As Thanks for the comment. The results of [RLS-GM of the originally submitted manuscript are
obtained by our locally running the source code provided by the authors. In the revised text,
they have been modified to the ones listed in the paper of "Robust relative rotation averaging,
2018"

R1Q5: It would be better if the authors can repart the size of the clusters [or minimal, maximal,

and median size) and the number of clusters for each dataset in the revised manuscript. The

size and number of clusters will certainly affect the speed (and possibly accuracy) of the
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e Submission (2021.08.06, 7 pages) > Minor Revision (2021.09.08

 Revision Submitted

2021.09.17, 8 pages) > Accept (2021.10.06

Dear Editors and Reviewers,:

Many thanks for the valuable comments, the manuscript has been revised accordingly. The
following is our reply ta the specific comments by the editars and reviewers. In the revised text,
the changed parts are marked in RED.-

For the Reviewer #1:

R1Q1: It seems that the proposed IRA++ Is a simple combination of HRRA and IRA. In
particular, IRA++ uses the same framework of HRRA (including finding the cluster graph and
estimation of inter-cluster rotations). The only difference Is that IRA++ replaces the
RANSAC-based rotation averaging in some places of HRRA with the IRA solver. Thus, it looks to
me that the novelty of the proposed method is limited as the proposed method is a heuristic
combination of existing methods. I hope the authars can clarify the contribution and novelty of
this worle.

A: Thanks for the comment. In the revised text, the contributions of this work are made more
clarified. They lie in the following three folds: 1) A upgraded version of IRA, termed as IRA++, is
presented based on the thought of divide and conquer, to deal with the drifting and efficiency
issues of IRA in large-scale situations. 2) The original IRA method is tightly Integrated inta his
novel pipeline to solve the low-level Inner-sub-EG rotation averaging problems locally and the
high-level inter-sub-EG ratation averaging problem globally. 3) Our proposed IRA++ is tharoughly
evaluated and achieves overall best performance in both efficiency and accuracy compared with
several other state-of-the-art rotation averaging methods. In addition, note that though IRA++
and HRRA share similar divide and conquer strategy and framework, their motivations and
technical insights are different. For HRRA, the core rotation averaging solver, RANSAC-based
rotation averaging. could be regarded as a global solver, as it performs outlier filtering and
rotation optimization globally. In that way. the clustering operation in HRRA is used to
constrain the size of the random spanning tree, by which the all-inlier minimal set is more
likely to be selected. However, For [RA++, the core rotation averaging solver is IRA, which is an
incremental solver and suffers from drifting and efficiency issues in large-scale situations. As a
result, the divide and conquer strategy in IRA++ is mainly employed to deal with these

exclusive issues of incremental parameter estimation pipeline.-

R1Q2: The estimation accuracy of IRA++ without global optimization is still comparable to that
of IRA. Thus, even though it achieves the top accuracy, the improvement seems incremental
compared to IRA. This implies that the final global optimization plays an important role on
improving the accuracy. Indeed. the difference in accuracy between IRA++ with/without GO is
more significant than the difference between IRA++ without GO and IRA. However, this

abserved importance of the final global opti isabit ictory to the mativation of

this work. In particular, from table 2 the authors claim that partitioning the graph nodes
improves the graph connectivity statistics of Wilson et.al. and thus the divide-and-conquer
strategy makes rotation averaging easier. From this point of view, the final global optimization
would make the connectivity statistics worse again, but it turns out that this step has more
significant improvement on the overall accuracy and 1 find this a bit confusing. It is possible
that the inter-cluster rotations are not estimated accurately due to the sparse connections
between the clusters, or it is possible that the graph structure indicator does not fully explain
the hardness of the rotation averaging problem in the new distributed setting (for example
statistics based on graph connection Laplacian could be better suited, as it simultaneously
considers the graph connectivity and rotation consistency). In any case, | believe that a more
careful investigation and explanation is needed in this regard.

A: Thanks for the comment. Please note that global optimization is usually a necessary step in

divide and conquer strategy-based pipeli

That is because without considering all the
constraints globally, the divide and conquer strategy-based pipeline’ solution is easy to fall into
local minima, which would result in the loss of estimation accuracy. In addition, for the IRA++
method considered here, though the accuracy of IRA++ \wo GO is not extremely high, it is good
enough to serve as initialization and filter out outlier for the global optimization to achieve
obvious accuracy improvement. Please note also that global optimization is iteratively
performed on the original IRA, including the final global optimization with all absolute rotation
estimated, and thus it is not quite fair to directly compare the accuracy of IRA and IRA++ \wo
GO. As for the graph connectivity evaluation, the indicator we used stems from the graph
Laplacian, and it is only used to compare the graph connectivity of the EGs used in IRA and
IRA++. In addition, we think that the accuracy improvement after global optimization of IRA++
is not contradictory to the problem hardness discussed in this work. That s because when

discussing the hardness of a rotation averaging problem, the estimation initial guess and

measurement outlier label is supposed to be unknown. Howsver, the problem of IRA++ wi

only global optimization left is not the case. With the quite accurate estimation initial guess and

measurement outlier label, its hardness is undoubtedly much lower than the original problem
of IRA and the sub-problems of IRA%+.:

R1Q3: In table 5, none of other distributed methods (except HRRA) are compared. It seems
that other global methods can also be applied to inner/inter-cluster rotation estimation,
following the same framewaork of this work and HRRA. Have the authors tried other methods
(e.g IRLS-S\ell_{\frac{1}{2}}$}) using the same divide and conquer strategy? I am curious
IRA++. This

about the speed and accuracy of such implementation and how that compares wi
could verify the critical (IRA or distri L
method.

) of the propased

A: Thanks for the comment. We locally implement a distributed version of the IRLS-#:, which is

achieved by alternating the IRA-based inner- and inter-sub-EG rotation averaging steps in

IRA#+ to IRLS-:-based ones. In the revised text the distributed IRLS-f; is compared with IRA,
IRA++, and RLS-#; in both efficiency (TABLE IV) and accuracy (TABLE VI). From the
comparison experiments we can see that though distributed [RLS- £, achieves better
performance in both efficiency and accuracy than IRLS-fy, our proposed RA++ sil achieves

top performance, which demonstrate the effectiveness of both the divide and conquer pipeline
and the [RA-based key steps.-

R1Q4: The comparison between IRLS-GM and IRLS-$\ell_{\frac12}3 is contradictory to that of
that paper; IRLS-$\ell_{\frac12}§ works significantly
better than [RLS-GM on 1DSMM dataset. However, table § shows a different story using the same

“rabust rotation averaging, 2018". |

dataset. Is there any difference between the implementation of IRLS in the two papers?s
As Thanks for the comment. The results of [RLS-GM of the originally submitted manuscript are
obtained by our locally running the source code provided by the authors. In the revised text,
they have been modified to the ones listed in the paper of "Robust relative rotation averaging,
2018"

R1Q5: It would be better if the authors can repart the size of the clusters [or minimal, maximal,

and median size) and the number of clusters for each dataset in the revised manuscript. The

size and number of clusters will certainly affect the speed (and possibly accuracy) of the
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RZQZ: From part 3, considering that the whole pipeline is constructed with the existing A: Thanks for the comment. Table Il has been modified in the revised text for better

methods or framewarlks, the technique novelty may be limited. As the highlight of this method: clarification according to the reviewer's suggestion..

a new divide-and-conquer strategy, deserving more discussion. [e.g. the technique intuition, the P
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* Acopy of avaluable review

1. The noun " method” is used many many times through abstract. | would try to

reformulate some sentences and use the nouns " scheme” or " discretization” as
alternatives. XFRENEBHEIENHPEILCERAIRFESH —LY, FEZ2EB—Na. Akl
EXRFEERENEN RS TREE—WIANY. FENXE, il XA, adopt use utilize
employ; 7/, #iA\IZBE, represent show indicate depict illustrate give elucidate 2.
24, contribute provide propose represent; (i) &E. 14t #H. B (THAH
i%..): report show give offer develop image devise; Z3K: require ask demand call. X4
HWLOCRNAF L, SRNEATERZGELRTRE—F, BONPEENEXFEICEET
Xk, IREHH.

2. Second line: " ...to represent THE solution IN each cell..” ;i.e. | would add “ the” and
replace " at” with " in" . RXFEthe, —RREHEN. FRHINBIEEE HIAIATE
#Z=MAthe, HENBEERIBZRPEE, MFR. AEENAEInatofon forzZEMNEREH
iz

3. Third line: please add a space between freedoms and the first parenthesis. [RSThe
degree of freedoms(DOFs), (DOFs)RIHZEE =g, (BRUSEBAMOEEIN—3) .

4. NPKEABUEERKES, RERROREEEER. FIFENERXT<TRIEREI.

5. The adverb " So" is used to start and connect two sentences. | would replace it with

"

formal adverbs like * Therefore, In fact, etc.” .

6. | believe that ” differentiate operators” is not correct. | think the Author should use ”
differential operators” or” differentiation operators” . Please, apply this correction
through all the manuscript —£5aC AR, FHEFRGTESRmILERERIELC, #Hast
MEZR—T, BE—RAFEREHRAR.

7. End of the fourth line/beginning of the fifth line: the comma is preceded by a wrong
additional space. tr=ABEHITEITE.

8. The acronyms ENO and WENO are immediately used without explicitly state what they
mean. Moreover, the full name for discontinuous Galerkin is used without introducing

108 of 163 | Oct 2021 the acronym which will be useful later on. | think the Authors should try to be By X. Gao
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Writing: General Ideas

* Write early

* Write the paper as early as possible, sometimes even before starting the

research work

* Good writing is re-writing, and it often helps to put the paper down and

return to it later
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* Write the paper as early as possible, sometimes even before starting the

research work

* Good writing is re-writing, and it often helps to put the paper down and

return to it later
* Writing modes

* Conventional mode: idea -» research > writing
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* Writing modes
* Conventional mode: idea -» research > writing

* Simon Peyton Jones: idea > writing > research
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Writing: General Ideas

* Writing modes
* Conventional mode: idea -» research > writing
* Simon Peyton Jones: idea > writing > research

* Ming-Hsuan Yang: idea > writing > research > revising
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Writing: Some Details

e Title

* Cooltitles grab people’s attention
* How to get your CVPR paper accepted/rejected?

« Shiftable multiscale transforms/What is wrong with wavelets?
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Writing: Some Details

* Equations

* The formulation of equations should conform to the specification

* The number of equations should be in a proper range

* Many good papers have no or few equations: CVPR 2013 best paper

* Paperis not product manual, there is no need to provide every detail
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Writing: Some Details

* Figures and Captions

« So the figure captions should be self-contained and the caption should tell

the reader what to notice about the figure

xwﬂ g

Fig. 3. Schematic diagram of the proposed aerial-view synthesis method. C,
and C, are a pair of ground and aerial cameras, and F, is the fundamental
matrix between them. Mg, is the co-visible mesh of C, and C,. fis a facet in M,
and f, and f, are the projections of f in (g and C,, respectively. Hgg is the
homography between f, and f, induced by the facet f. Note that each facet in

M,, induces a unique homography.

ELLLTTTTIT]

Fig. 4. An example of ground-to-aerial image matching result. The first row is
the matching result between the Rols (defined in Section 3.2.3) of the aerial and
synthetic images, where the blue segments denote the point matches. The
second row is the original aerial and ground image matching pair, where the
black rectangles denote the Rols for image matching.
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Bad references
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Writing: Some Details

e Common mistakes

there is no doubt that vs. no doubt (doubtless)

* Needless words used for ... purposes vs. used for ...

he is a man who vs. he
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Paper Gestalt

* Most CVers are the members of appearance club

* Main point

* Getyour paper looking pretty with right mix of equations, tables and figures

Math: Sophisticated
mathematical expressions
make a paper look technical
and make the authors
appear knowledgeable and
“smart”.

Plots: ROC, PR, and other
performance plots convey a
sense of thoroughness.
Standard deviation bars are
particularly pleasing to a
scientific eye.

Figures/Screenshots: lllustrative
figures that express complex
algorithms in terms of 3" grade
visuals are always a must.
Screenshots of anecdotal results
are also very effective.
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* Most CVers are the members of appearance club
* Main point

* Getyour paper looking pretty with right mix of equations, tables and figures
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Large confusing tables.

Missing pages.

Lack of colorful figures.
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Rules

* Read author guidelines

Submission Guidelines

All submissions will be handled electronically via the conference's CMT Website. By submitting a paper, the authors agree to the policies stipulated in this website.
The paper submission deadline is November 15, 2019. Supplementary material can be submitted until November 22, 2019.

Papers are limited to eight pages, including figures and tables, in the CVPR style. Additional pages containing only cited references are allowed. Please refer to the
following files for detailed formatting instructions:

* Example submission paper with detailed instructions
* | aTeX/Word Templates (tar)
® | aTeX/Word Templates (zip)
Papers that are not properly anonymized, or do not use the template, or have more than eight pages (excluding references) will be rejected without review.
1) Paper submission and review site:
Submission Site (hookmark or save this URL!)
Please make sure that your browser has cookies and Javascript enabled.
Please add "email@msr-cmt.org" to your list of safe senders (whitelist) to prevent important email announcements from being blocked by spam filters.

Loginto CMT 3 at https://cmt3.research.microsoft.com. If you do not see “2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)” in the
conference list already, click on the “All Conferences” tab and find it there.

2) Setting up your profile: You can update your User Profile, Email, and Password by clicking on your name in the upper-right inside the Author Console and
choosing the appropriate option under “General’.

3) Domain Conflicts: When you log in for the first time, you will be asked to enter your conflict domain information. You will not be able to submit any paper
without entering this information. We need to ensure conflict-free reviewing of all papers. At any time, you can update this information by clicking on your name in
the upper-right and entering “Domain Conflicts” under CVPR 2020.

Itis the primary author's responsibility to ensure that all authors on their paper have registered their institutional conflicts into CMT3. Each author should list
domains of all institutions they have worked for, or have had very close collaboration with, within the last 3 years (example: mit.edu; ox.ac.uk; microsoft.com). DO
NOT enter the domain of email providers such as gmail.com. This institutional conflict information will be used in conjunction with prior authorship conflict
information to resolve assignments to both reviewers and area chairs. If a paper is found to have an undeclared or incorrect institutional conflict, the paper may be
summarily rejected.

4) Creating a paper submission: This step must be completed by the paper registration deadline. After this deadline, you will not be able to register new papers,
Ibut you will be able to edit the information for existing papers.
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The CVPR 2020 Reviewer Guidelines

Thank
review

for CVPR 2020! To maintain a high-quality technical program, we rely very much on the time and expertise of our
ving Committee for CVPR 2020.

you for volunteering your time to re
ers. This document explains what is expected of all members of the Reviev

ver certificate and a gift certificate of $100 USD. In addition, all reviewers who
vill be guaranteed a registration ticket for a period of time after registration opens.

nvers will receive a CVPR Top Re
s, No reviews with very few words)

Benefits for Reviewers: 100 of our top revi
did a good job (on time in submitting review

In addition to the guidelines below, you should read this CVPR 2020 Reviewer Tutorial for a summary of the decision process, annotated examples of good/bad
reviews, and tips. You may also be interested in the CVPR 2020 Area Chair Tutorial to give you an overview of the process from the Area Chairs’ point of view.

The CVPR 2020 Reviewing Timeline

Paper Submission Deadline November 15, 2019
Papers Assigned to Reviewers December 7, 2019
Reviews Due January 17, 2020
Start of Post-Rebuttal Discussion Period February ¢, 2020
Final Recommendations Due February 17, 2020
Decisions Released to Authors February 23, 2020

Blind Reviews

Our Author Guidelines have instructed authors to make reasonable efforts to hide their identities, including omitting their names, affiliations, and
acknowledgments. This information will of course be included in the published version. Likewise, reviewers should make all efforts to keep their identity invisible
to the authors.

With the increase in popularity of arXiv preprints, sometimes the authors of a paper may be known to the reviewer. Posting to arXiv is NOT considered a violation
of anonymity on the part of the authors, and in most cases, reviewers who happen to know (or suspect) the authors’ identity can still review the paper as long as
they feel that they can do an impartial job. An important general principle is to make every effort to treat papers fairly whether or not you know (or suspect) who
wrote them. If you do not know the identity of the authors at the start of the process, DO NOT attempt to discover them by searching the Web for preprints.

Please read the FAQ at the end of this document for further guidelines on how arXiv prior work should be handled,
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* Lessons
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Several influential papers have been rejected once or twice: SIFT

* Some best papers make little impact

* Never give up in the process

= Google Scholar Distinctive image features from scale-invariant keypoints

# Articles About 4 esults (0.03 se

Any time Distinctive image features from scale-invariant keypoints
Since 2020 DG Lowe - International journal of computer vision, 2004 - Springer
Since 2019 This paper presents a method for extracting distinctive invariant features from images that
Since 2016 can be used to perform reliable matching between differant views of an object or scene. The

Custom range...

features are invariant to image scale and rotation, and are shown to provide robust matching ...
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Two More Things

* One Possibly Effective Way to Improving English Writing

* Find several papers in the top-tier publications related to your research field,
e.g., IEEE T-PAMI, 1JCV, Automatica, IEEE T-AC

» Read the abstracts carefully and translate them into Chinese
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Two More Things

* One Possibly Effective Way to Improving English Writing

* Forget about this and do other jobs on your schedule
« After several days, find out your Chinese translation version and translation

them back to English
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Two More Things

* One Possibly Effective Way to Improving English Writing

» Perform a careful cross check between the original abstracts and your circle

translation ones and find out what are the differences and why
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USAC: A Universal Framework
for Random Sample Consensus

Rahul Raguram, Ondrej Chum, Member, IEEE, Marc Pollefeys, Member, IEEE,
Jiri Matas, Member, IEEE, and Jan-Michael Frahm, Member, IEEE

Abstract—A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data
that have been contaminated by noise and outliers. More generally, any praciical system that seeks to estimate quantities from noisy
data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC)
algorithm is one of the most popular tools for rebust estimation. Recent years have seen an explosion of activity in this area, leading to
the development of a number of technigues that improve upen the efficiency and robustness of the basic RANSAGC algorithm. In this
paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing
various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new
framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify
structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we
provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the
various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package
We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be

orasa k for new

2022
used by researchers either as a stand-alene tool for robust
Index Terms—RANSAC, robust estimation

1 INTRODUCTION

computational task that arises in a number of applica-
tion scenarios is the estimation of model parameters

from data that may be contaminated with measurement
noise and, more significantly, may contain points that do not
conform to the model being estimated. These points, called
outliers, have a dramatic effect on the estimation process—a
nonrobust technique, such as least squares regression, can

produce arbitrarily bad model

timates in the presence of a

single outlier. Consequently, the field of robust estintation has
been well studied over the years, both in the statistics
community [1], [2], [3], [4], as well as in computer vision [5],
[6], [7]. A wide variety of algorithms have been proposed
over the past four decades, varying in the degree of
robustness that they provide to outliers, the assumptions
they make about the data, and their computational complex-
ity, among other aspects. Of these many algorithms, perhaps
the one that is used most widely, particularly in computer
vision, is random sample consensus, or RANSAC [7].
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The RANSAC algorithm is a remarkably simple, yet
powerful, technique. One compelling reason for its wide-
spread adoption, in addition to its simplicity, is the ability
of the algorithm to tolerate a tremendous level of contam-
ination, providing reliable parameter estimates even when
well over half the data consists of outliers. However, while
robust, the basic RANSAC algorithm has its drawbacks,
impacting its accuracy, efficiency, and stability. Recent
years have seen exciting advances in dealing with each of
these problems. Indeed, these improvements in computa-
tional efficiency and robustness have helped drive forward
the state of the art, particularly as the computer vision and
robotics communities push toward more challenging pro-
blems on massive real-world datasets [8], [9], [10], [11], [12]
and seek real-time performance [13], [14], [15], [16].
However, while a number of recent efforts have focused
on addressing issues with RANSAC, relatively less atten-
tion has been paid to a unified review of these develop-
ments. Some recent efforts in this direction are those of [17],
[18], which analyze and compare the performance of some
recent RANSAC variants on a selection of geometric
estimation problems. We seek to extend this idea further.
QOur goals in this work are twofold:

o To present a comprehensive overview of recent
research in RANSAC-based robust estimation, and
to provide a common context within which to
study these disparate techniques. To do so, we
propose a generalization of the standard hypothe-
size-and-verify structure of standard RANSAC, ex-
tending it to incorporate a number of important
practical and computational considerations. We
term this Universal RANSAC, to emphasize the fact
that most of the important RANSAC variants
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Abstract

We present VSAC, a RANSAC-type robust estimator with
a number of novelties. It benefits from the introduction
of the concept of ind. dent inliers that imp signifi-
cantlythe efficacy of the dominant plane handling and, also,
allows near error-free rejection of incorrect models, without
false positives. The local optimization process and its ap-
plication is improved so that it is run on average only once.
Further technical improvements include adaptive sequen-
tial hypothesis veriﬁcunon and Eﬁicwﬂt model estimation
via Gaussian eli on four lard
datasets show that VSAC is ﬂgmﬁcanﬁy faster than all its
predecessors and runs on average in 1-2 ms, on a CPU.
It is two orders of magnitude faster and yet as precise as
MAGSAC++, the currently most accurate estimator of two-
view geometry. In the repeated runs on EVD, HPatches,
PhotoTourism, and Kusvod2 datasets, it never failed.

1. Introduction

The Random Sample Consensus (RANSAC) algorithm
introduced by Fischler and Bolles [14] is one of the most
popular robust estimators in computer science. The method
is widely used in computer vision, its applications include
stereo matching [*3, 35], image mosaicing [15], motion

ion [27], 3D rec detection of geomet-
ric primitives, and structure and motion estimation [25].

The textbook version of RANSAC proceeds as follows:
random samples of minimal size sufficient to estimate the
model parameters are drawn repeatedly. Model consistency
with input data is evaluated, e.g., by counting the points
closer than a manually set inlier-outlier threshold. If the cur-
rent model is better then the so-far-the-best, it gets stored.
The procedure terminates when the probability of finding a
better model falls below a user-defined level. Finally, the
estimate is polished by least-squares fitting of inliers.

Many modifications of the original algorithm have been
proposed. Regarding sampling, PROSAC [£] explo'ts ana
priori predicted inlier probability rank. NAPSAC [27] sam-

ples in the neighborhood of the first, randomly selected,
point. Progressive NAPSAC [?] combines both and adds
gradual convergence to uniform spatial sampling.

In textbook RANSAC, the model quality is measured by
its support, L.e., the number of inliers, points consistent with
the model. MLESAC [4] introduced a quality measure that
makes it the maximum likelihood procedure. To avoid the
need for a user-defined noise level, MINPRAN [32] and
A-contrario RANSAC [17] select the inlier-outlier thresh-
old so that the inliers are the least likely to occur at ran-
dom. Reflecting the inherent uncertainty of the threshold
estimate, MAGSAC [5] marginalizes the quality function
over a range of noise levels. MAGSAC++ [4] proposes an
iterative re-weighted least-squares optimization of the so-
far-the-best model with weights calculated from the inlier
probability of points. The Locally Optimized RANSAC [9]
refines the so-far-the-best model using a non-minimal num-
ber of points, e.g., by iterated least-squares fitting. Graph-
Cut RANSAC [2], inits local optimization, exploits the fact
that real-world data tend to form spatial structures. The
model evaluation is usually the most time-consuming part
as it depends both on the number of models generated and
the number of input data points. A quasi-optimal speed-
up was achieved by the Sequential Probability Ratio Test
(SPRT) [25] that randomizes the verification process itself.

In many cases, points in degenerate configuration affect
the estimation severely. For example, correspondences ly-
ing on a single plane is a degenerate case for F estimation.
DEGENSAC [! 1] detects such cases and applies the plane-
and-parallax algorithm. USAC [29] was the first framework
integrating many of the mentioned techniques, including
PROSAC, SPRT, DEGENSAC, and LO-RANSAC.

In this paper, we present VSAC', a RANSAC-type es-
timator that exploits a number of novelties. It is signifi-
cantly faster than all its predecessors, and yet as precise as
MAGSAC++, the currently most accurate method both in
our experiments and according to a recent survey [23]. The
accuracy reaches, or is very near, the geometric error of the

1VSAC has multiple novelties and we found no natural abbreviation
reflecting them. We chose "V™ as the letter following "U™, as in USAC.
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Abstract—A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data
that have been contaminated by noise and outliers. More generally, any praciical system that seeks to estimate quantities from noisy
data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC)
algorithm is one of the most popular tools for rebust estimation. Recent years have seen an explosion of activity in this area, leading to
the development of a number of technigues that improve upen the efficiency and robustness of the basic RANSAGC algorithm. In this
paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing
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single outlier. Consequently, the field of robust estintation has
been well studied over the years, both in the statistics
community [1], [2], [3], [4], as well as in computer vision [5],
[6], [7]. A wide variety of algorithms have been proposed
over the past four decades, varying in the degree of
robustness that they provide to outliers, the assumptions
they make about the data, and their computational complex-
ity, among other aspects. Of these many algorithms, perhaps
the one that is used most widely, particularly in computer
vision, is random sample consensus, or RANSAC [7].
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impacting its accuracy, efficiency, and stability. Recent
years have seen exciting advances in dealing with each of
these problems. Indeed, these improvements in computa-
tional efficiency and robustness have helped drive forward
the state of the art, particularly as the computer vision and
robotics communities push toward more challenging pro-
blems on massive real-world datasets [8], [9], [10], [11], [12]
and seek real-time performance [13], [14], [15], [16].
However, while a number of recent efforts have focused
on addressing issues with RANSAC, relatively less atten-
tion has been paid to a unified review of these develop-
ments. Some recent efforts in this direction are those of [17],
[18], which analyze and compare the performance of some
recent RANSAC variants on a selection of geometric
estimation problems. We seek to extend this idea further.
QOur goals in this work are twofold:

o To present a comprehensive overview of recent
research in RANSAC-based robust estimation, and
to provide a common context within which to
study these disparate techniques. To do so, we
propose a generalization of the standard hypothe-
size-and-verify structure of standard RANSAC, ex-
tending it to incorporate a number of important
practical and computational considerations. We
term this Universal RANSAC, to emphasize the fact
that most of the important RANSAC variants
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that real-world data tend to form spatial structures. The
model evaluation is usually the most time-consuming part
as it depends both on the number of models generated and
the number of input data points. A quasi-optimal speed-
up was achieved by the Sequential Probability Ratio Test
(SPRT) [25] that randomizes the verification process itself.

In many cases, points in degenerate configuration affect
the estimation severely. For example, correspondences ly-
ing on a single plane is a degenerate case for F estimation.
DEGENSAC [! 1] detects such cases and applies the plane-
and-parallax algorithm. USAC [29] was the first framework
integrating many of the mentioned techniques, including
PROSAC, SPRT, DEGENSAC, and LO-RANSAC.

In this paper, we present VSAC', a RANSAC-type es-
timator that exploits a number of novelties. It is signifi-
cantly faster than all its predecessors, and yet as precise as
MAGSAC++, the currently most accurate method both in
our experiments and according to a recent survey [23]. The
accuracy reaches, or is very near, the geometric error of the

1. Introduction

The Random Sample Consensus (RANSAC) algorithm
introduced by Fischler and Bolles [14] is one of the most
popular robust estimators in computer science. The method
is widely used in computer vision, its applications include
stereo matching [*3, 35], image mosaicing [15], motion

ion [27], 3D rec detection of geomet-
ric primitives, and structure and motion estimation [25].

The textbook version of RANSAC proceeds as follows:
random samples of minimal size sufficient to estimate the
model parameters are drawn repeatedly. Model consistency
with input data is evaluated, e.g., by counting the points
closer than a manually set inlier-outlier threshold. If the cur-
rent model is better then the so-far-the-best, it gets stored.
The procedure terminates when the probability of finding a
better model falls below a user-defined level. Finally, the
estimate is polished by least-squares fitting of inliers.

Many modifications of the original algorithm have been

proposed. Regarding sampling, PROSAC [£] explo'ts ana
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Figures

* Definite Purpose
« Each figure should have a definite purpose
* This might be to help clarify the text, or demonstrate a particular
experimental result
* Figures included just to look more appealing are not appropriate in
scientific writing
* Figures should be used for information which is hard to explain in

words, and the reader will find easier to grasp that by means of figures
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Figures

* Definite Purpose

* Forfigures with curves or broken lines:
« Make sure that the axes are labelled to state what they represent;

* Make sure that the range of values are shown with units
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Figures

* Definite Purpose

* Forfigures with curves or broken lines:

« Make sure that the axes are labelled to state what they represent;

* Make sure that the range of values are shown with units

 Bad example

Do not write like this!

Student
Interest

Length of Book

¥ vague and suggestive
X Fail to give units

¥ No mathematical basis

By X. Gao




Figures

* Definite Purpose
« For figures with curves or broken lines:
« Make sure that the axes are labelled to state what they represent;
* Make sure that the range of values are shown with units

 Good example

Power (W)
15}

10}

i 3 3 4 Voltage (V)
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Figures

* Reference and Explanation
* Every figure should be referred to in the main text explicitly. Do not include

figures without saying what they show

 Explain how it adds to the text, and what the reader is supposed to

understand
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Figures

* Reference and Explanation

* Every figure should be referred to in the main text explicitly. Do not include
figures without saying what they show

 Explain how it adds to the text, and what the reader is supposed to
understand

* For example: Fig. 1 shows how power delivered to the battery varies with
voltage in our supercharger circuit. As the voltage increases, the power
delivered also increases. Thus, for rapid charging, the supercharger should

be operated at as high a voltage as possible
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Figures

* Size
* Do not make figures too small

* Tryto avoid shrinking figures to accommodate more text
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Figures

e Size

* If you must use small figures,
at least show a sub-figure
which zooms in on the
important part to show the
difference in detail

* Make sure that the smallest
text in any figure is no
smaller than the main font

size used in the paper
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Figures

* Consistency
* Make sure that text within figures, and the caption, is consistent with the
main text:
* Anyterminology used should match that in the main text

* Symbols should look the same, ideally in the same font
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Fig. 2. Simulation results of 6y (%), 02(t), Lp1(t), Lp2(t) of the dual-
PAM system (reference values—red dashed line; simulation results—blue solid
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Figures

* Placement
* Place figures as near as possible to where they are first mentioned in the
text, ideally on the same page, or at least the next page
« It is distracting to readers to have to skip forwards and backwards
between the text and figures
* Thelinear flow of ideas should not be disrupted
* Ensure that figures are numbered in the same order that they appear

in the paper
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Figures

 Placement
* For ease of reading, figures (and tables) should normally be placed at the
top of the page (or column), rather than in the middle of it, except for small

figures which fit into the flow of the text

Figure/
Table

Figure/
Table

Figure/ Figure/

Table Table

Top v/ | Middle X
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Tables

* Special Figures
* Most of the above comments about figures equally apply to tables
* They arereally a particular kind of figure containing textual information.
« Tables and figures conventionally numbered separately
* Algorithm pseudocode listings could also be presented as another special

kind of figure (or table), again with their own numbering sequence
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Tables

e Presentation

* The typical use of tables is to present numerical results or some other
numerical information

* Make sure each row and column has appropriate headers to explain what
that row or column contains

* If numbers are physical quantities, the table should state the units with

each number
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Tables

* Decimal Places
* Do not give numbers to more significant digits than are necessary to make
your point
* For example: if comparing the success rate of alternative approaches, and
these numbers vary from 40% to 95%, you do not need to give any decimal
places at all. On the other hand, if they vary between 98% to 99% you may

need one or even two decimal places
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Mathematical Notations

* Follow the Standard

« If your research field conventionally uses standard notations for various
mathematical values, make sure you follow it

 For example: It is standard practice to call the principal curvatures in
differential geometry k; and k,, and it would be unhelpful and confusing
to refer to them as c, and ¢,

» If previous papers have all used the same symbols for some quantities you
also need, use the same symbols

» Readers often consider and compare several papers on the same topic
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Mathematical Notations

 Definition and Placement

* Make sure that all mathematical notations used are defined, apart from

commonly understood ones liker and e

* The definition should come as close as possible to the place where the

symbol is first used in your paper
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Mathematical Notations

 Definition and Placement

 Anexample

Considering an EG, denoted as G = (V, £), is formed by |V
cameras and |£| relative rotation measurements. A vertex v; € V)
corresponds to a camera with absolute rotation R; and an edge
e;; € & links an image pair with relative rotation R, ;. Then, the
rotation averaging problem is defined as:

€4 e€

where { R’} is the estimated absolute rotations, p(.) is the
loss function for robust optimization, and d(., .) is the distance
measure between the measured and re-computed relative ro-
tations. For loss function p(), thanks to our effective outlier
filtering strategy, the simple /o loss is used in this letter. For
distance measure d(., .), we choose the angular distance dy(., .),
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{R;} = argmin » p(d(R;;,R;R])). (1)

which i1s used in most of the related works [10], [11], [17],
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Mathematical Notations

* Single Meaning
* Make sure that each notation is used with only a single meaning in a given
paper
* When you are defining your own symbols, use easily remembered names

as much as possible
* For example, Use P for a point and L for a line, rather than, say A for
the point and B for the line
* If you have several related items, give them related names
* For example, If you have several related points, use subscripts, and

call them P;, P,, and P3, or failing that, call them P, Q,and R
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Mathematical Notations

 Advice

 Computer scientists are usually advised that variables and functions in
programs should be given long names

* However, in mathematics, the convention is to (usually) use single letter
names for such quantities, and for subscripts

* Do not express ideas entirely through mathematical notation.

* Tryingto put the ideas into words in the main text

* Explain ideas informally in English first, further giving more precise details

in mathematical notation

157 of 163 | Oct 2021 By X. Gao



Numbering

» Sections, Figures, Tables, etc.

« Sections and subsections should be hierarchically numbered throughout
the paper. The first section of the paper, Section 1, should have subsections
numbered 1.1, 1.2, and so on

* Al figures should be sequentially numbered using a single sequence
throughout the paper, rather than a hierarchical approach

* Tables should have their own separate sequential numbering sequence, as

should any other type of special items such as algorithms, theorems, etc
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Numbering

 Examples of Figures or Tables
* When cross-referring to sections, figures, tables, and equations, refer to
them precisely by number, rather than more vaguely
* For example: ‘Figure 7 shows ...’ rather than ‘The above figure shows ...’
* ‘The above tables’ could refer to any number of previous tables
* However, refer to ‘The next section’ in cases where the meaning is

unambiguous
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Numbering

* Examples of Figures or Tables

» The exact format used to refer to figures, tables and equations is
determined by the publisher’s house style

* For example, it might be asin ‘Figure 2’, ‘Fig. 2’, or ‘Figure (2)’
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Numbering

* Examples of Equations

When you are referring back to equations, you should summarize what they
mean, rather than simply referring to them by number

* Do not write like this!

* We substitute Eqn. (2) into Eqn. (6) to obtain the following equation
* Instead, write

We substitute the locality constraint in Eqn. (2) into the similarity

function in Eqn. (6) to give the neighborhood similarity, as follows
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